Адаптивный двухэтапный проксимальный алгоритм для задачи о равновесии в пространствах Адамара
Рассмотрены задачи о равновесии в метрических пространствах Адамара. Для приближенного решения задач предложен и изучен новый адаптивный двухэтапный проксимальный алгоритм. В отличие от применяемых ранее правил выбора величины шага в предлагаемом алгоритме не проводятся вычисления значений бифункции...
Gespeichert in:
| Datum: | 2020 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2020
|
| Schriftenreihe: | Кибернетика и системный анализ |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/190522 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Адаптивный двухэтапный проксимальный алгоритм для задачи о равновесии в пространствах Адамара / Я.И. Ведель, Г.В. Сандраков, В.В. Семенов // Кибернетика и системный анализ. — 2020. — Т. 56, № 6. — С. 136–148. — Бібліогр.: 33 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Рассмотрены задачи о равновесии в метрических пространствах Адамара. Для приближенного решения задач предложен и изучен новый адаптивный двухэтапный проксимальный алгоритм. В отличие от применяемых ранее правил выбора величины шага в предлагаемом алгоритме не проводятся вычисления значений бифункции в дополнительных точках и не требуется знания информации о величине липшицевых констант бифункции. Для псевдомонотонных бифункций липшицевого типа доказана теорема о слабой сходимости порожденных алгоритмом последовательностей. Предложенный алгоритм применим к псевдомонотонным вариационным неравенствам в гильбертовых пространствах. |
|---|