Spectroscopy peculiarities of electric arc discharge plasma with iron vapours
This work is devoted to spectroscopy peculiarities of electric arc discharge plasma with iron vapours. The solution of the main issue of optical emission spectroscopy, namely, selection of iron spectral lines, to study the parameters of non-uniform and non-steady-state plasma source, was considered...
Gespeichert in:
| Datum: | 2021 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/194778 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Spectroscopy peculiarities of electric arc discharge plasma with iron vapours / A. Murmantsev, A. Veklich, V. Boretskij // Problems of atomic science and tecnology. — 2021. — № 1. — С. 171-175. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-194778 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1947782025-02-09T13:36:37Z Spectroscopy peculiarities of electric arc discharge plasma with iron vapours Особливості спектроскопії плазми електродугового розряду в парах заліза Особенности спектроскопии плазмы электродугового разряда в парах железа Murmantsev, A. Veklich, A. Boretskij, V. Plasma diagnostics This work is devoted to spectroscopy peculiarities of electric arc discharge plasma with iron vapours. The solution of the main issue of optical emission spectroscopy, namely, selection of iron spectral lines, to study the parameters of non-uniform and non-steady-state plasma source, was considered within this paper. Specifically, the Boltzmann plots technique was used for detailed analysing of application possibility of Fe I spectral lines as well as for determination of plasma temperature. The spatial profiles of selected spectral line emission intensities were used to measure the radial distributions of plasma temperature of free-burning arc discharge between consumable electrodes at 3.5 A. Розглянуто особливості спектроскопії плазми електродугового розряду в парах заліза. Запропоновано вирішення основної задачі оптичної емісійної спектроскопії, а саме селекції спектральних ліній заліза, для дослідження параметрів неоднорідного та нестаціонарного плазмового джерела. Зокрема, метод діаграм Больцмана використовувався для детального аналізу та можливості застосування спектральних ліній Fe I, а також для визначення температури плазми. Просторові профілі інтенсивності випромінювання обраних спектральних ліній використовувались для вимірювання радіальних розподілів температури плазми вільно існуючого дугового розряду між плавкими електродами при силі струму дуги 3,5 А. Рассмотрены особенности спектроскопии плазмы электродугового разряда в парах железа. Предложено решение основной задачи оптической эмиссионной спектроскопии, а именно селекции спектральных линий железа, для изучения параметров неоднородного и нестационарного источника плазмы. В частности, метод диаграмм Больцмана использовался для детального анализа и возможности применения спектральных линий Fe I, а также для определения температуры плазмы. Пространственные профили интенсивности излучения выбранных спектральных линий использовались для измерения радиальных распределений температуры плазмы свободно горящего дугового разряда между плавящимися электродами при силе тока дуги 3,5 А. 2021 Article Spectroscopy peculiarities of electric arc discharge plasma with iron vapours / A. Murmantsev, A. Veklich, V. Boretskij // Problems of atomic science and tecnology. — 2021. — № 1. — С. 171-175. — Бібліогр.: 20 назв. — англ. 1562-6016 PACS: 52.70.-m https://nasplib.isofts.kiev.ua/handle/123456789/194778 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Plasma diagnostics Plasma diagnostics |
| spellingShingle |
Plasma diagnostics Plasma diagnostics Murmantsev, A. Veklich, A. Boretskij, V. Spectroscopy peculiarities of electric arc discharge plasma with iron vapours Вопросы атомной науки и техники |
| description |
This work is devoted to spectroscopy peculiarities of electric arc discharge plasma with iron vapours. The solution of the main issue of optical emission spectroscopy, namely, selection of iron spectral lines, to study the parameters of non-uniform and non-steady-state plasma source, was considered within this paper. Specifically, the Boltzmann plots technique was used for detailed analysing of application possibility of Fe I spectral lines as well as for determination of plasma temperature. The spatial profiles of selected spectral line emission intensities were used to measure the radial distributions of plasma temperature of free-burning arc discharge between consumable electrodes at 3.5 A. |
| format |
Article |
| author |
Murmantsev, A. Veklich, A. Boretskij, V. |
| author_facet |
Murmantsev, A. Veklich, A. Boretskij, V. |
| author_sort |
Murmantsev, A. |
| title |
Spectroscopy peculiarities of electric arc discharge plasma with iron vapours |
| title_short |
Spectroscopy peculiarities of electric arc discharge plasma with iron vapours |
| title_full |
Spectroscopy peculiarities of electric arc discharge plasma with iron vapours |
| title_fullStr |
Spectroscopy peculiarities of electric arc discharge plasma with iron vapours |
| title_full_unstemmed |
Spectroscopy peculiarities of electric arc discharge plasma with iron vapours |
| title_sort |
spectroscopy peculiarities of electric arc discharge plasma with iron vapours |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2021 |
| topic_facet |
Plasma diagnostics |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/194778 |
| citation_txt |
Spectroscopy peculiarities of electric arc discharge plasma with iron vapours / A. Murmantsev, A. Veklich, V. Boretskij // Problems of atomic science and tecnology. — 2021. — № 1. — С. 171-175. — Бібліогр.: 20 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT murmantseva spectroscopypeculiaritiesofelectricarcdischargeplasmawithironvapours AT veklicha spectroscopypeculiaritiesofelectricarcdischargeplasmawithironvapours AT boretskijv spectroscopypeculiaritiesofelectricarcdischargeplasmawithironvapours AT murmantseva osoblivostíspektroskopííplazmielektrodugovogorozrâduvparahzalíza AT veklicha osoblivostíspektroskopííplazmielektrodugovogorozrâduvparahzalíza AT boretskijv osoblivostíspektroskopííplazmielektrodugovogorozrâduvparahzalíza AT murmantseva osobennostispektroskopiiplazmyélektrodugovogorazrâdavparahželeza AT veklicha osobennostispektroskopiiplazmyélektrodugovogorazrâdavparahželeza AT boretskijv osobennostispektroskopiiplazmyélektrodugovogorazrâdavparahželeza |
| first_indexed |
2025-11-26T07:07:36Z |
| last_indexed |
2025-11-26T07:07:36Z |
| _version_ |
1849835769330401280 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2021. №1(131)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2021, №1. Series: Plasma Physics (27), p. 171-175. 171
https://doi.org/10.46813/2021-131-171
SPECTROSCOPY PECULIARITIES OF ELECTRIC ARC DISCHARGE
PLASMA WITH IRON VAPOURS
A. Murmantsev, A. Veklich, V. Boretskij
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
E-mail: murmantsev.aleksandr@gmail.com
This work is devoted to spectroscopy peculiarities of electric arc discharge plasma with iron vapours. The
solution of the main issue of optical emission spectroscopy, namely, selection of iron spectral lines, to study the
parameters of non-uniform and non-steady-state plasma source, was considered within this paper. Specifically, the
Boltzmann plots technique was used for detailed analysing of application possibility of Fe I spectral lines as well as
for determination of plasma temperature. The spatial profiles of selected spectral line emission intensities were used
to measure the radial distributions of plasma temperature of free-burning arc discharge between consumable
electrodes at 3.5 A.
PACS: 52.70.-m
INTRODUCTION
The plasma with iron vapours as a plasma-forming
gas is of a great interests due to its numerous
applications. First of all, it is important object of
investigation in the gas-tungsten arc welding (GTAW)
processes, in which iron vapours is originated from the
molten steel anode [1]. Such vapours are also presented
in the gas-metal arc welding (GMAW) due to melting of
iron electrode [2].
It is naturally that such kinds of welding methods
need a permanent improving or optimization due to the
constant emergence of new branches of their application.
For example, a new welding method of ultrasonic
wave-assisted underwater wet welding (UUWW) has
recently emerged [3]. An applying the acoustic radiation
force to the arc bubble as an extra retaining force is in the
base of such method. The analysis of UUWW was
carried out on steel plates, material of which, obviously,
can be transferred into a bubble volume.
A high-speed welding process with tandem pulsed gas
tungsten arcs, which employed two pulse arcs is another
one novel kind of GTAW [4]. The welding speed was
studied by application of such method to 304 austenite
stainless steel plate.
Also in connection with the emergence of new
materials for pipelines, for example, erosion-resistant
high-manganese steel (HMS) [5], it is relevant to improve
already known welding methods. The authors developed
welding procedure on the base of consumable wire for
such pipes.
In addition to the works mentioned, over the past
couple of years, many more welding techniques [6-8], in
the process of which the iron vapours take place, and new
materials requiring special approaches [9, 10] have been
proposed.
It is obvious, that such methods and materials need
the detail investigations of plasma of such discharge
kinds with aim to improving and optimization of welding
procedures. The optical emission spectroscopy (OES) can
be one of a potential study method of process, which
occurring during welding or plasma-surface interaction
[11, 12]. Such method allows determining the main
plasma parameters: temperature and electron density,
which can be obtained, for example, by Boltzmann plot
technique [13] and from spectral line width broadened
due to Stark mechanisms [14], respectively. Therefore,
the intensity of spectral line, emitted by discharge plasma,
underlies on the base of such methods of plasma
parameters determination.
In our previous works, the plasma of underwater
discharge between metal, specifically, iron granules, was
investigated [15, 16]. In frame of these works the large
attention was devoted to spectral lines selection and their
application in plasma parameters determination.
Within this paper spectroscopy peculiarities of
thermal plasma of arc discharge with admixtures of iron
vapours were considered. Namely, it is made an
attempting to use the previously selected Fe I spectral
lines [15] in study of the parameters of non-uniform and
non-steady-state plasma of electric arc between steel
electrodes.
1. EXPERIMENT
In this investigation the free-burning electric arc
discharges between electrodes, manufactured of steel
C10, were ignited in air atmosphere at arc current of
3.5 A. As an initial step, with aim of preliminary
selection of spectral lines, the spatial-integrated emission
spectrum of such plasma was registered by
Solar LS SDH-IV spectrometer in the spectral range of
480...620 nm.
Fig. 1. The optical scheme of experimental setup, based
on monochromator, for registration of spectral line
emission intensities[17]
At the next step, the experimental setup on the base
of monochromator MDR-12 (Fig. 1 [17]) was used for
mailto:murmantsev.aleksandr@gmail.com
172 ISSN 1562-6016. ВАНТ. 2021. №1(131)
registration of spatial profiles of selected spectral lines
emission intensities to determine the radial distributions
of plasma temperature.
For the purpose of a detailed study of the contours of
spectral lines with a high spectral resolution, the previous
experimental setup could be supplemented with a Fabry-
Perot interferometer (FPI) in the optical scheme (Fig. 2).
Fig. 2. The optical scheme of experimental setup, based
on monochromator, with addition of FPI [17]
2. RESULTS AND DISCUSSIONS
At the first stage, the Boltzmann plots were used to
select the corresponding Fe I spectral lines, which are
sufficient resolved in the registered spectrum (Fig. 3)
and will be used in determining the plasma temperature.
The modelled spectrum taken from NIST [18] is shown
in Fig. 3 as well.
Fig. 3. The emission spectra of electric arc discharge
plasma with iron vapours: black line – registered
spectrum, red line – modelled spectrum taken from
NIST [18]
As one can see, a large amount of Fe I spectral lines
are observed in free-burning arc plasma. Previously we
studied the plasma of underwater discharges between
iron granules [15] as well. It was naturally to use some
spectral lines, which were under consideration in that
work, with the aim of spectroscopy diagnostic of
electric arc discharge plasma in air atmosphere.
Each line was clearly detected, separated and then
approximated by Voight function [19]. It should be noted,
that intensity of spectral lines with the same energy of
upper levels, which cannot be resolved in aproppriate
manner due to close wavelength was measured by the
another one approach [15]. These lines were approximated
by one-peak method and then were used in Boltzmann plot
(Fig. 4).
At the next stage the spectral lines, which are most
coincinding with an approximating straight line and have
a sufficient difference between energy of upper level for
Boltzmann plot, were chosen for registration of radial
distributions of intesities. The Boltzmann plots on the
base of such Fe I spectral lines in different spatial points
of discharge arc plasma are shown in Fig. 5.
Fig. 4. Boltzmann plot on the base of previously
selected Fe I spectral line
Fig. 5. Typical Boltzmann plots in different spatial
points from axis of electric arc discharge plasma
A significant scatter of points relative to the
approximating straight line is clearly observed on each
plot. This phenomenon can be explained by two reasons.
On the one hand, the spectroscopic data, taken from [18],
were obtained with significant error (~25 %). On the
other hand, such divergence can be caused by
overlapping spectral lines with close wavelengths. The
corresponding spatial profile of plasma temperature is
shown in Fig. 6.
As it can be found from [15] and Fig. 3, the radiation
of plasma with iron vapours is characterised by large
amount of spectral lines with close wavelengths. Just due
to this, it is necessity to use the experimental setup, where
FPI is used as the device with high spectral and spatial
resolution for separation of such lines. Contours of each
spectral line, which was used in Boltzmann plot (see
Fig. 5), were registered and analysed. The typical
interferograms of Fe I lines with and without overlapping
are shown in Figs. 7-9. It must be noted, that investigations
480 500 520 540 560 580 600 620
0
40
80
120
160
200
240
280
320
360
400
l, nm
1 - Fe I 487.1, 487.2
2 - Fe I 489.1, 489.2
3 - Fe I 491.9, 492.1
4 - Fe I 495.7, 495.8
5 - Fe I 500.2, 500.6
6 - Fe I 513.7, 513.9
7 - Fe I 516.7
8 - Fe I 522.7
9 - Fe I 523.3
10 - Fe I 526.7, 526.9
11 - Fe I 532.8, 532.9
12 - Fe I 534.1
13 - Fe I 557, 557.3
14 - Fe I 558.7
15 - Fe I 561.6
I, a.u.
0
1000000
2000000
3000000
5
2
1
3
4
6
7 8
9
10
12
13
14
15
11
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
-14
-12
-10
-8
-6
-4
487.1
489.1
490.3
492
495.8
500.2
500.6
516.7
522.7
523.3
526.9
532.4
532.8
534.1
556.9
557.3
558.7
561.6
E, eV
ln(Il/Ag)
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
-42
-41
-40
-39
-38
-37
-36
-35
-34
487.1
489.1
492
495.8
500.2
516.7
526.9
532.8
r = 0 mm
r = 0.85 mm
r = 1.91 mm
E, eV
ln(gf/Il3)
ISSN 1562-6016. ВАНТ. 2021. №1(131) 173
of interferograms of spectral lines were carried out at arc
current of 3.5 and 30 A with the aim of clarification of both
overlapping and self-reversing of spectral lines profiles.
Fig. 6. The radial distribution of plasma temperature,
obtained on the base of selected Fe I spectral lines
a
b
Fig. 7. Registered interferograms of Fe I spectral lines
at arc current of 3.5 A (a) and 30 A (b)
As one can see (see Fig. 7), Fe I 532.80 spectral line
is overlapped by Fe I 532.83 and 532.85 nm spectral
lines. Therefore, the previously registered emission
intensity of the Fe I 532.8 line, which was used in the
Boltzmann plot (see Fig. 5), is a total intensity of three
lines as it turned out. So, this spectral line as well as
other similar lines cannot be used in temperature
determination due to its intensity overestimation.
a
b
Fig. 8. Registered interferograms of Fe I 495.8 nm
spectral line at arc current of 3.5 A (a) and 30 A (b)
a
b
Fig. 9. Registered interferograms of Fe I 516.7 nm
spectral line at arc current of 3.5 A (a) and 30 A (b)
0.0 0.5 1.0 1.5 2.0
2000
4000
6000
8000
10000
12000
14000
16000
r, mm
T, K
6 7 8 9
25
30
35
40
45
50
55
60
65
Fe I 532.85
Fe I 532.83
x, mm
Fe I 532.80
I, a.u.
5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
0
20
40
60
80
100
120
140
x, mm
I, a.u.
Fe I 532.80
Fe I 532.83
Fe I 532.85
6.5 7.0 7.5 8.0 8.5 9.0
27
30
33
36
39
42
45
x, mm
I, a.u.
6 7 8 9 10 11
0
20
40
60
80
100
120
140
160
x, mm
I, a.u.
7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5
25
30
35
40
45
50
55
60
65
x, mm
I, a.u.
7 8 9 10 11
20
40
60
80
100
120
140
x, mm
I, a.u.
174 ISSN 1562-6016. ВАНТ. 2021. №1(131)
Fig. 10. Typical Boltzmann plots in different spatial
points on the base of two isolated Fe I spectral lines
The radial distribution of temperature of electric arc
discharge plasma, determined by Boltzmann plot
(Fig. 10) on the base of two isolated spectral lines, is
shown in Fig. 11. It must be noted, that just these
spectral lines can be recommended in the plasma
temperature determination by the relative intensities
method.
Fig. 11. The radial distribution of plasma temperature,
obtained on the base of two isolated Fe I spectral lines
One can see from Figs. 6, 11, the plasma
temperature, obtained on the base of two well-isolated
spectral lines, is more less in comparison with
temperature, obtained on the base of all registered Fe I
lines (see Fig. 5). However, the results, shown in
Fig. 11, is in more or less agreement with temperature
of 6300 K at the arc axis, obtained for discharge at
current of 5 A and with gap of 2 mm between iron
electrodes [20].
It must be noted, the rising of spatial temperature
profile can be explained by deviation from LTE on the
arc discharge periphery (radial point of 2.19 mm).
CONCLUSIONS
The spectroscopy peculiarities of electric arc
discharge plasma with iron vapours are considered
within this investigation. Specifically, the application
possibility of Fe I spectral lines as well as determination
of plasma temperature were studied by Boltzmann plots
technique.
It was found, that spectrum of plasma with iron
vapours is complicated due to large amount Fe I spectral
lines. The spectral lines of Fe I 495.8 and 516.7 nm can
be recommended in the plasma temperature
determination, in particular, by the relative intensities
method.
REFERENCES
1. A.B. Murphy. A Perspective on Arc Welding
Research: The Importance of the Arc, Unresolved
Questions and Future Directions // Plasma Chem.
Plasma Process. 2015, v. 35, p. 471-489.
2. A.B. Murphy. The effects of metal vapour in arc
welding // J. Phys. D: Appl. Phys. 2010, v. 43(43),
p. 434001.
3. J. Wang, Q. Sun, J. Teng, J. Feng. Bubble Evolution
in Ultrasonic Wave-Assisted Underwater Wet FCAW //
Welding Journal. 2019, v. 98(5), p. 150-163. DOI:
10.29391/2019.98.012
4. H. Jiang et al. High-Speed Tandem Pulsed GTAW of
Thin Stainless Steel Plate // Welding Journal. 2019,
v. 98(8), p. 215-226.
DOI: https://doi.org/10.29391/2019.98.019
5. X. Yue et al. Technology Development for an
Erosion-Resistant Slurry Pipeline Steel // Welding
Journal. 2018, v. 97(8), p. 229-242.
DOI: 10.29391/2018.97.020
6. B. Heider et al. Influence of carbon diffusion on
microstructure and wear behaviour of duplex stainless
steel surface layers on lamellar grey cast iron // Material
wiss. Werkstofftech. 2019, v. 50, p.1165-1180.
DOI 10.1002/mawe.201900129
7. B. Heider et al. Corrosion Resistance and
Microstructure of Welded Duplex Stainless Steel
Surface Layers on Gray Cast Iron // J. Therm. Spray
Tech. v. 29(3), p.1-17.
https://doi.org/10.1007/s11666-020-01003-y
8. A. Mohamadizadeh et al. Spot Weld Strength
Modeling and Processing Maps for Hot-Stamping Steels
// Welding Journal. 2019, v. 98(8), p. 241-249. DOI:
10.29391/2019.98.021
9. C. Luo et al. Effect of laser heat treatment on bending
property of laser welded joints of low-alloy ultra-high
strength steel // Journal of Laser Applications. 2019,
v. 31(3), p. 032011.
DOI: 10.2351/1.5089875
10. U. Reisgen et al. Improving the corrosion and wear
resistance of grey cast iron components by surface
welding with duplex stainless steel using regulated gas
metal arc welding: Influence of dilution on corrosion
properties // Material wiss. Werkstofftech. 2018, v. 49,
p. 1520-1537.
DOI 10.1002/mawe.201800151
11. A. Murmantsev et al. Plasma-surface interaction of
electric arc discharge between composite Cu-Cr
electrodes // Problems of Atomic Science and
Technology. 2020, № 6(130), p. 174-178.
https://doi.org/10.46813/2020-130-174.
12. A. Murmantsev et al. Thermal Plasma of Electric
Arc Discharge Between Composite Cu-Cr Electrodes:
0.0 0.5 1.0 1.5 2.0 2.5
2000
3000
4000
5000
6000
r, mm
T, K
file:///C:/Users/UserPC/Desktop/PAST_Arc_Fe/10.29391/2019.98.012
https://doi.org/10.29391/2019.98.019
file:///C:/Users/UserPC/Desktop/PAST_Arc_Fe/10.29391/2018.97.020
file:///C:/Users/UserPC/Desktop/PAST_Arc_Fe/10.1002/mawe.201900129
https://doi.org/10.1007/s11666-020-01003-y
file:///C:/Users/UserPC/Desktop/PAST_Arc_Fe/10.29391/2019.98.021
file:///C:/Users/UserPC/Desktop/PAST_Arc_Fe/10.2351/1.5089875
file:///C:/Users/UserPC/Desktop/PAST_Arc_Fe/10.1002/mawe.201800151
https://doi.org/10.46813/2020-130-174
ISSN 1562-6016. ВАНТ. 2021. №1(131) 175
Optical Emission аnd Electrode Surface Interaction //
Plasma Physics and Technology. 2020, v. 7(2), p. 43-
51.
doi:10.14311/ppt.2020.2.43
13. I.L. Babich et al. Spectroscopic data and Stark
Broadening of Cu I and Ag I spectral lines: selection
and analysis // Advances in Space Research. 2014,
v. 54, p. 1254-1263.
14. S. Zielinska et al. Measurement of atomic Stark
parameters of many Mn I and Fe I spectral lines
usingGMAW process // J. Phys. D: Appl. Phys. 2010,
v. 43, p. 434005. doi:10.1088/0022-3727/43/43/434005
15. A. Murmantsev, A. Veklich, V. Boretskij. Excitation
temperatures in plasma of underwater discharges
between iron granules // Problems of Atomic Science
and Technology. 2020, № 6(130), p. 204-207.
https://doi.org/10.46813/2020-130-204
16. A. Veklich et al. Regulation of biological processes
with complexions of metals produced by underwater
spark discharge // Nanooptics and Photonics,
Nanochemistry and Nanobiotechnology, and Their
Applications. Springer Proceedings in Physics. 2019,
v. 247, p. 283-306.
https://doi.org/10.1007/978-3-030-52268-1_23
17. R.V. Semenyshyn et al. Spectroscopy peculiarities
of thermal plasma of electric arc discharge between
electrodes with Zn admixtures // Advances in Space
Research. 2014, v. 54, p. 1235-1241.
http://dx.doi.org/10.1016/j.asr.2013.11.042
18. A. Kramida, Yu. Ralchenko, J. Reader and NIST
ASD Team. NIST Atomic Spectra Database (ver. 5.7.1),
[Online]. Available: https://physics.nist.gov/asd [2020,
October 20]. National Institute of Standards and
Technology, Gaithersburg, 2019.
19. A. Murmantsev et al. Hydrogen Balmer Spectral
Lines in Spectroscopy of Underwater Electric Spark
Discharge Plasma // Contributions of the Astronomical
Observatory Skalnaté Pleso. 2020, v. 50, p. 96-104.
https://doi.org/10.31577/caosp.2020.50.1.96
20. F. Burhorn. Temperatur and thermisches
Gleichgewicht im Eienbogen // Zeitschrift fur Physik.
1955, v. 140, p. 440-451.
Article received 28.12.2020
ОСОБЕННОСТИ СПЕКТРОСКОПИИ ПЛАЗМЫ ЭЛЕКТРОДУГОВОГО РАЗРЯДА В ПАРАХ
ЖЕЛЕЗА
А. Мурманцев, А. Веклич, В. Борецкий
Рассмотрены особенности спектроскопии плазмы электродугового разряда в парах железа. Предложено
решение основной задачи оптической эмиссионной спектроскопии, а именно селекции спектральных линий
железа, для изучения параметров неоднородного и нестационарного источника плазмы. В частности, метод
диаграмм Больцмана использовался для детального анализа и возможности применения спектральных
линий Fe I, а также для определения температуры плазмы. Пространственные профили интенсивности
излучения выбранных спектральных линий использовались для измерения радиальных распределений
температуры плазмы свободно горящего дугового разряда между плавящимися электродами при силе тока
дуги 3,5 А.
ОСОБЛИВОСТІ СПЕКТРОСКОПІЇ ПЛАЗМИ ЕЛЕКТРОДУГОВОГО РОЗРЯДУ В ПАРАХ ЗАЛІЗА
О. Мурманцев, А. Веклич, В. Борецький
Розглянуто особливості спектроскопії плазми електродугового розряду в парах заліза. Запропоновано
вирішення основної задачі оптичної емісійної спектроскопії, а саме селекції спектральних ліній заліза, для
дослідження параметрів неоднорідного та нестаціонарного плазмового джерела. Зокрема, метод діаграм
Больцмана використовувався для детального аналізу та можливості застосування спектральних ліній Fe I, а
також для визначення температури плазми. Просторові профілі інтенсивності випромінювання обраних
спектральних ліній використовувались для вимірювання радіальних розподілів температури плазми вільно
існуючого дугового розряду між плавкими електродами при силі струму дуги 3,5 А.
doi:10.14311/ppt.2020.2.43
doi:10.1088/0022-3727/43/43/434005
https://doi.org/10.46813/2020-130-204
https://doi.org/10.1007/978-3-030-52268-1_23
http://dx.doi.org/10.1016/j.asr.2013.11.042
https://physics.nist.gov/asd
https://doi.org/10.31577/caosp.2020.50.1.96
|