A dual heavy ion beam probe diagnostic on the TJ-II stellarator

The aim of the report is to show the development of HIBP diagnostics on the TJ-II stellarator and, as a result, the expansion of the range of plasma parameters measurements. The first Heavy Ion Beam Probe (HIBP-1) diagnostic is being used on TJ-II stellarator since 2000. It has been shown significan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Chmyga, O.O., Ascasibar, E., Barcala, J., Drabinskiy, M.A., Eliseev, L.G., Hidalgo, C., Khabanov, P.O., Khrebtov, S.M., Komarov, O.D., Kozachok, O.S., Krupnik, L.I., Lysenko, S.E., Melnikov, A.V., Molinero, A., Pablos, J.L.de, Perfilov, S.V., Zenin, V.N., TJ-II Team
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2019
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/194903
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A dual heavy ion beam probe diagnostic on the TJ-II stellarator / O.O. Chmyga, E. Ascasibar, J. Barcala, M.A. Drabinskiy, L.G. Eliseev, C. Hidalgo, P.O. Khabanov, S.M. Khrebtov, O.D. Komarov, O.S. Kozachok, L.I. Krupnik, S.E. Lysenko, A.V. Melnikov, A. Molinero, J.L.de Pablos, S.V. Perfilov, V.N. Zenin, TJ-II Team // Problems of atomic science and technology. — 2019. — № 1. — С. 248-251. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-194903
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1949032025-02-09T14:21:48Z A dual heavy ion beam probe diagnostic on the TJ-II stellarator Подвійна діагностика зондування плазми пучком важких іонів на стелараторі TJ-II Двойная диагностика зондирования плазмы пучком тяжелых ионов на стеллараторе TJ-II Chmyga, O.O. Ascasibar, E. Barcala, J. Drabinskiy, M.A. Eliseev, L.G. Hidalgo, C. Khabanov, P.O. Khrebtov, S.M. Komarov, O.D. Kozachok, O.S. Krupnik, L.I. Lysenko, S.E. Melnikov, A.V. Molinero, A. Pablos, J.L.de Perfilov, S.V. Zenin, V.N. TJ-II Team Plasma diagnostics The aim of the report is to show the development of HIBP diagnostics on the TJ-II stellarator and, as a result, the expansion of the range of plasma parameters measurements. The first Heavy Ion Beam Probe (HIBP-1) diagnostic is being used on TJ-II stellarator since 2000. It has been shown significant progress in the measurements of plasma profiles and oscillations. The second HIBP-2 system was installed on TJ-II in 2012. Dual HIBP system, consisting of two identical HIBP-1 and HIBP-2 located ¼ torus apart, provides the measurement of the long-range correlations of plasma parameters in the full plasma column. Low noise high gain (10⁷ V/A) preamplifiers with 1 Hz bandwidth sampling is used. They allow to study broadband turbulence and quasi-coherent modes like geodesic acoustic modes, Alfven eigenmodes, suprathermal electron induced modes, etc. New capabilities of the dual HIBP diagnostic in plasma potential and density investigations were demonstrated on TJ-II stellarator in the measurements of the correlation between fluctuations in different poloidal and toroidal locations: on the same field line, on the same magnetic surface or on different magnetic surfaces at different points, separated toroidally and/or poloidally. На стелараторі TJ-II створена подвійна система зондування плазми пучком важких іонів (ЗППВІ). Система складається з двох ідентичних комплексів, розташованих на відстані ¼ тора. Перший діагностичний комплекс почав діяти в 2000 році. Другий комплекс був встановлений в 2012 році. Використання підсилювачів детекторних сигналів з низьким рівнем шуму (10⁷ В/A) з пропускною здатністю 1 МГц дозволяє вивчати широкосмугову турбулентність та квазікогерентні режими, такі як геодезичні акустичні моди; альфвенівські моди; супертермальні моди, які збурюються швидкими електронами, тощо. Нові можливості подвійної системи були продемонстровані при вимірюваннях далеких кореляцій між флуктуаціями в різних полоїдальних та тороїдальних місцях: на одній лінії магнітного поля, на одній або на різних магнітних поверхнях у різних точках, розташованих тороїдально та/або полоїдально. На стеллараторе TJ-II создана двойная система зондирования плазмы пучком тяжелых ионов (ЗППТИ). Система состоит из двух идентичных комплексов, расположенных на расстоянии ¼ тора. Первый диагностический комплекс начал действовать в 2000 году. Второй комплекс был установлен в 2012 году. Использование усилителей детекторных сигналов с низким уровнем шума (10⁷ В/A) и полосой пропускания 1 МГц позволяет изучать широкополосную урбулентность и квазикогерентные моды, такие как геодезические акустические моды; альфвеновские собственные моды; моды, индуцированные надтепловыми электронами и т.д. Новые возможности двойной системы были продемонстрированы при измерениях дальних корреляций между флуктуациями, измеренными в различных полоидальних и тороидальных положениях: на одной или на разных магнитных поверхностях, в различных точках, смещенных тороидально и/или полоидально. The work of Kharkiv team was carried out by STCU, Project P-507F. The work of Kurchatov team was funded by Russian Science Foundation (project 14-22-00193). A.V. Melnikov was partly supported by the Competitiveness Program of NRNU MEPhI. 2019 Article A dual heavy ion beam probe diagnostic on the TJ-II stellarator / O.O. Chmyga, E. Ascasibar, J. Barcala, M.A. Drabinskiy, L.G. Eliseev, C. Hidalgo, P.O. Khabanov, S.M. Khrebtov, O.D. Komarov, O.S. Kozachok, L.I. Krupnik, S.E. Lysenko, A.V. Melnikov, A. Molinero, J.L.de Pablos, S.V. Perfilov, V.N. Zenin, TJ-II Team // Problems of atomic science and technology. — 2019. — № 1. — С. 248-251. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 52.70.Nc https://nasplib.isofts.kiev.ua/handle/123456789/194903 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Plasma diagnostics
Plasma diagnostics
spellingShingle Plasma diagnostics
Plasma diagnostics
Chmyga, O.O.
Ascasibar, E.
Barcala, J.
Drabinskiy, M.A.
Eliseev, L.G.
Hidalgo, C.
Khabanov, P.O.
Khrebtov, S.M.
Komarov, O.D.
Kozachok, O.S.
Krupnik, L.I.
Lysenko, S.E.
Melnikov, A.V.
Molinero, A.
Pablos, J.L.de
Perfilov, S.V.
Zenin, V.N.
TJ-II Team
A dual heavy ion beam probe diagnostic on the TJ-II stellarator
Вопросы атомной науки и техники
description The aim of the report is to show the development of HIBP diagnostics on the TJ-II stellarator and, as a result, the expansion of the range of plasma parameters measurements. The first Heavy Ion Beam Probe (HIBP-1) diagnostic is being used on TJ-II stellarator since 2000. It has been shown significant progress in the measurements of plasma profiles and oscillations. The second HIBP-2 system was installed on TJ-II in 2012. Dual HIBP system, consisting of two identical HIBP-1 and HIBP-2 located ¼ torus apart, provides the measurement of the long-range correlations of plasma parameters in the full plasma column. Low noise high gain (10⁷ V/A) preamplifiers with 1 Hz bandwidth sampling is used. They allow to study broadband turbulence and quasi-coherent modes like geodesic acoustic modes, Alfven eigenmodes, suprathermal electron induced modes, etc. New capabilities of the dual HIBP diagnostic in plasma potential and density investigations were demonstrated on TJ-II stellarator in the measurements of the correlation between fluctuations in different poloidal and toroidal locations: on the same field line, on the same magnetic surface or on different magnetic surfaces at different points, separated toroidally and/or poloidally.
format Article
author Chmyga, O.O.
Ascasibar, E.
Barcala, J.
Drabinskiy, M.A.
Eliseev, L.G.
Hidalgo, C.
Khabanov, P.O.
Khrebtov, S.M.
Komarov, O.D.
Kozachok, O.S.
Krupnik, L.I.
Lysenko, S.E.
Melnikov, A.V.
Molinero, A.
Pablos, J.L.de
Perfilov, S.V.
Zenin, V.N.
TJ-II Team
author_facet Chmyga, O.O.
Ascasibar, E.
Barcala, J.
Drabinskiy, M.A.
Eliseev, L.G.
Hidalgo, C.
Khabanov, P.O.
Khrebtov, S.M.
Komarov, O.D.
Kozachok, O.S.
Krupnik, L.I.
Lysenko, S.E.
Melnikov, A.V.
Molinero, A.
Pablos, J.L.de
Perfilov, S.V.
Zenin, V.N.
TJ-II Team
author_sort Chmyga, O.O.
title A dual heavy ion beam probe diagnostic on the TJ-II stellarator
title_short A dual heavy ion beam probe diagnostic on the TJ-II stellarator
title_full A dual heavy ion beam probe diagnostic on the TJ-II stellarator
title_fullStr A dual heavy ion beam probe diagnostic on the TJ-II stellarator
title_full_unstemmed A dual heavy ion beam probe diagnostic on the TJ-II stellarator
title_sort dual heavy ion beam probe diagnostic on the tj-ii stellarator
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2019
topic_facet Plasma diagnostics
url https://nasplib.isofts.kiev.ua/handle/123456789/194903
citation_txt A dual heavy ion beam probe diagnostic on the TJ-II stellarator / O.O. Chmyga, E. Ascasibar, J. Barcala, M.A. Drabinskiy, L.G. Eliseev, C. Hidalgo, P.O. Khabanov, S.M. Khrebtov, O.D. Komarov, O.S. Kozachok, L.I. Krupnik, S.E. Lysenko, A.V. Melnikov, A. Molinero, J.L.de Pablos, S.V. Perfilov, V.N. Zenin, TJ-II Team // Problems of atomic science and technology. — 2019. — № 1. — С. 248-251. — Бібліогр.: 12 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT chmygaoo adualheavyionbeamprobediagnosticonthetjiistellarator
AT ascasibare adualheavyionbeamprobediagnosticonthetjiistellarator
AT barcalaj adualheavyionbeamprobediagnosticonthetjiistellarator
AT drabinskiyma adualheavyionbeamprobediagnosticonthetjiistellarator
AT eliseevlg adualheavyionbeamprobediagnosticonthetjiistellarator
AT hidalgoc adualheavyionbeamprobediagnosticonthetjiistellarator
AT khabanovpo adualheavyionbeamprobediagnosticonthetjiistellarator
AT khrebtovsm adualheavyionbeamprobediagnosticonthetjiistellarator
AT komarovod adualheavyionbeamprobediagnosticonthetjiistellarator
AT kozachokos adualheavyionbeamprobediagnosticonthetjiistellarator
AT krupnikli adualheavyionbeamprobediagnosticonthetjiistellarator
AT lysenkose adualheavyionbeamprobediagnosticonthetjiistellarator
AT melnikovav adualheavyionbeamprobediagnosticonthetjiistellarator
AT molineroa adualheavyionbeamprobediagnosticonthetjiistellarator
AT pablosjlde adualheavyionbeamprobediagnosticonthetjiistellarator
AT perfilovsv adualheavyionbeamprobediagnosticonthetjiistellarator
AT zeninvn adualheavyionbeamprobediagnosticonthetjiistellarator
AT tjiiteam adualheavyionbeamprobediagnosticonthetjiistellarator
AT chmygaoo podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT ascasibare podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT barcalaj podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT drabinskiyma podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT eliseevlg podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT hidalgoc podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT khabanovpo podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT khrebtovsm podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT komarovod podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT kozachokos podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT krupnikli podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT lysenkose podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT melnikovav podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT molineroa podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT pablosjlde podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT perfilovsv podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT zeninvn podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT tjiiteam podvíjnadíagnostikazonduvannâplazmipučkomvažkihíonívnastelaratorítjii
AT chmygaoo dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT ascasibare dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT barcalaj dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT drabinskiyma dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT eliseevlg dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT hidalgoc dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT khabanovpo dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT khrebtovsm dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT komarovod dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT kozachokos dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT krupnikli dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT lysenkose dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT melnikovav dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT molineroa dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT pablosjlde dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT perfilovsv dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT zeninvn dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT tjiiteam dvojnaâdiagnostikazondirovaniâplazmypučkomtâželyhionovnastellaratoretjii
AT chmygaoo dualheavyionbeamprobediagnosticonthetjiistellarator
AT ascasibare dualheavyionbeamprobediagnosticonthetjiistellarator
AT barcalaj dualheavyionbeamprobediagnosticonthetjiistellarator
AT drabinskiyma dualheavyionbeamprobediagnosticonthetjiistellarator
AT eliseevlg dualheavyionbeamprobediagnosticonthetjiistellarator
AT hidalgoc dualheavyionbeamprobediagnosticonthetjiistellarator
AT khabanovpo dualheavyionbeamprobediagnosticonthetjiistellarator
AT khrebtovsm dualheavyionbeamprobediagnosticonthetjiistellarator
AT komarovod dualheavyionbeamprobediagnosticonthetjiistellarator
AT kozachokos dualheavyionbeamprobediagnosticonthetjiistellarator
AT krupnikli dualheavyionbeamprobediagnosticonthetjiistellarator
AT lysenkose dualheavyionbeamprobediagnosticonthetjiistellarator
AT melnikovav dualheavyionbeamprobediagnosticonthetjiistellarator
AT molineroa dualheavyionbeamprobediagnosticonthetjiistellarator
AT pablosjlde dualheavyionbeamprobediagnosticonthetjiistellarator
AT perfilovsv dualheavyionbeamprobediagnosticonthetjiistellarator
AT zeninvn dualheavyionbeamprobediagnosticonthetjiistellarator
AT tjiiteam dualheavyionbeamprobediagnosticonthetjiistellarator
first_indexed 2025-11-26T19:35:12Z
last_indexed 2025-11-26T19:35:12Z
_version_ 1849882807996776448
fulltext ISSN 1562-6016. ВАНТ. 2019. №1(119) 248 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2019, № 1. Series: Plasma Physics (25), p. 248-251. A DUAL HEAVY ION BEAM PROBE DIAGNOSTIC ON THE TJ-II STELLARATOR O.O. Chmyga 1 , E. Ascasibar 2 , J. Barcala 2 , M.A. Drabinskiy 3 , L.G. Eliseev 3 , C. Hidalgo 2 , P.O. Khabanov 3 , S.M. Khrebtov 1 , O.D. Komarov 1 , O.S. Kozachok 1 , L.I. Krupnik 1 , S.E. Lysenko 1 , A.V. Melnikov 3,4 , A. Molinero 2 , J.L. de Pablos 2 , S.V. Perfilov 3 , V.N. Zenin 3 , and TJ-II Team 1 National Science Center “Kharkov Institute of Physics and Technology”, Institute of Plasma Physics, Kharkiv, Ukraine; 2 Fusion National Laboratory, CIEMAT, Madrid, Spain; 3 National Research Centre “Kurchatov Institute, Moscow, Russia; 4 National Research Nuclear University MEPhI, Moscow, Russia The aim of the report is to show the development of HIBP diagnostics on the TJ-II stellarator and, as a result, the expansion of the range of plasma parameters measurements. The first Heavy Ion Beam Probe (HIBP-1) diagnostic is being used on TJ-II stellarator since 2000. It has been shown significant progress in the measurements of plasma profiles and oscillations. The second HIBP-2 system was installed on TJ-II in 2012. Dual HIBP system, consisting of two identical HIBP-1 and HIBP-2 located ¼ torus apart, provides the measurement of the long-range correlations of plasma parameters in the full plasma column. Low noise high gain (10 7 V/A) preamplifiers with 1 MHz bandwidth sampling is used. They allow to study broadband turbulence and quasi-coherent modes like geodesic acoustic modes, Alfven eigenmodes, suprathermal electron induced modes, etc. New capabilities of the dual HIBP diagnostic in plasma potential and density investigations were demonstrated on TJ-II stellarator in the measurements of the correlation between fluctuations in different poloidal and toroidal locations: on the same field line, on the same magnetic surface or on different magnetic surfaces at different points, separated toroidally and/or poloidally. PACS: 52.70.Nc INTRODUCTION The first plasma in TJ-II stellarator was produced in 1997. The locations of main diagnostics and parameters are shown in Fig. 1 and Table 1. Fig. 1. Schematic view of TJ-II stellarator with the locations of dual HIBP diagnostic HIBP-1 diagnostic was installed in 2000 [1, 2] and had the following parameters: injector primary cesium ion current 30…60 A, energy analyzer – 1 slit/4 collectors, amplifier frequency bandwidth 125 kHz. The initial HIBP-2 parameters (2012 year) were: injector primary ion current 50…100 A, energy analyzer 5 slit/20 collectors, preamplifier frequency bandwidth 500 kHz [3]. Both HIBP-1 and HIBP-2 of dual HIBP operate in the similar cross-section of TJ-II vacuum chamber, located 90 degrees toroidally apart (see Fig. 1). Distance between measurement points of the diagnostics in toroidal direction is 2...3 m. The main HIBP parameters are shown in Table 2 for injectors and Table 3 for analyzers. HIBP-2 diagnostic differs from HIBP-1. It has 2 energy analyzers contrasting to one analyzer in HIBP-1 [4]. Each analyzer of HIBP-2 has 5 entrance slits (20 channels of simultaneous measurements), HIBP-1 has 2 entrance slits (8 channels). Table 1 Main parameters of the stellarator TJ-II Parameter Value Unit Major radius, R0 1.5 m Minor radius, a ‹ 0.22 m Plasma volume, V 1 m 3 Field periods 4 – TF coils 32 – Numbers of ports 104 – Rotational transform, l/2π 0.9…2.5 – Magnetic field on axis, B0 1 T ECRH heating power, PECRH ‹ 600 kW NBI heating power, PNBI ‹ 1 MW Density, ne ‹ 6 10 19 m −3 Pulse length ‹ 300 ms ISSN 1562-6016. ВАНТ. 2019. №1(119) 249 Fig. 2. Schematic of Dual HIBP and measurement points position (radial scan) in plasma with the standard TJ-II magnetic configuration Table 2 Parameters of injectors: primary ion current Ipc, Faraday cup diameter internal Ø FC, distance between deflecting plates lDP Injector Ipc, A Ø FC, mm lDP, mm HIBP-1 30…200 26 25 HIBP-2 30…350 50 35 Table 3 Parameters of analyzers Analyzer № analyzers Slits/ channels Amplifier location Ubeam /Uan, kV HIBP-1 1 2/8 external 127/23.55 HIBP-2 2 2·5/20 internal 132/22.65 1. HIBP DIAGNOSTICS OPTIMIZATION The large-scale modernization of dual HIBP diagnostic was recently completed. Modernization was carried out in the following areas: – injectors – upgrade of the emitter block design and, emitter manufacturing technology; – energy analyzers – installation of two entrance slits (8 measurement channels) on HIBP-1, adjustment of analyzer 2 on HIBP-2 (5 slits, 20 channels), upgrade of amplifiers for HIBP-1 and HIBP-2 analyzers (1 MHz bandwidth and 10 7 V/A gain ); – software – upgrade of the program for monitoring and controlling parameters of dual HIBP. This modernization allows to simplify the control and monitoring of the system parameters, increase the life-time of the solid-state cesium thermo-ionic emitter. Increase in the primary ion current (up to 200 μA for HIBP-1 and up to 350 μA for HIBP-2) allows to improve the signal-to-noise ratio at the periphery and at the center of the plasma (at a density up to 3·10 19 m -3 ). 2. EXPERIMENTAL RESULTS HIBP-1 and HIBP-2 (Fig. 2) may operate separately or jointly (simultaneously). Simultaneous operation of both HIBPs is aimed to study the long-range correlation (LRC) of the oscillations of the core plasma electrostatic potential, density and poloidal magnetic field, and so directed to the study of Alfvén eigenmodes (AE) and zonal flows in toroidal plasmas. 2.1. LONG-RANGE PLASMA POTENTIAL CORRELATION Long-range plasma potential correlations present a fingerprint of the plasma behavior during the development of edge shear flows and the key role of electric fields to amplify them. Fig. 3. Spectrogram of the coherence between potential signals, Phi1 detected by HIBP-1 and Phi2 detected by HIBP-2. Bursts of coherency between potentials at the coincidence of SV radial positions for both beams evidence to LRCs of potential, localized at the certain radius (a); HIBP-1 scans over the Low-field-side of the plasma cross section, HIBP-2 in the fixed position (b); variation of total beam current (plasma density) during radial scan (c) Results (Figs. 3-5)show the presence of the long- range correlations in potential fluctuations, which are amplified by the development of radial electric fields during ECRH, whereas there is no correlation between ion saturation current signals [5, 6]. 2.2. ALFVEN EIGENMODES (fAE ~ 100…300 kHz) Spatial distribution of AEs was studied by dual HIBP in the plasma core [7, 8]. Spectrogram of the coherence between potential signals is shown on Fig. 6. 250 ISSN 1562-6016. ВАНТ. 2019. №1(119) Fig. 4. LRCs in the plasma potential averaged over 0<f< 20 kHz measured with HIBP-1 in the scanning mode and HIBP-2 at the fixed point rho=-0.63 (shot #39894) are significantly increase when ECRH is applied Fig. 5. LRCs averaged over 0<f< 20 kHz in the secondary beam total current (which is proportional to the plasma density) are in the order of the noise level in all heating scenarios Fig. 6. Spectrogram of the coherence between potential signals, Phi1 detected by HIBP-1 and Phi2 detected by HIBP-2, both scan over the plasma cross section (a). Plasma potentials during NBI and NBI+ECRH (b) 2.2. INFLUENCE OF PELLETS ON PLASMA POTENTIAL AND FLUCTUATION LEVELS The influence of pellets on core plasma turbulence and plasma profiles has been recently investigated using the dual HIBP. Experiments (Fig. 7) show the change in plasma potential (transition from ion to electron root of the ambipolarity equation) [9, 10]. Density fluctuations is strongly reduced in a short time scale (1 ms), followed by an increase along the evolution of plasma density and the recovery of the electron temperature [11]. Fig. 7. Influence of pellets on plasma potential and fluctuation levels CONCLUSIONS HIBP is a unique diagnostic to study directly plasma electric potential and turbulence characteristics in toroidal plasmas. The dual HIBP diagnostic is the next level of development of this diagnostic, which allows to measure long-range correlations in plasma potential and density, toroidal and poloidal structure of plasma turbulence and instability modes in the core and edge plasmas. Development of this diagnostic on TJ-II stellarator opens unique possibilities in this field, which is the most interesting and fast growing branch of both fundamental and applied physics of the magnetically confined plasma [12]. At present, dual HIBP is involved in all pilot physical programs of TJ-II: Zonal Flow, L-H transitions, ELMs characteristics, Alfven modes, MHD- activity, pellets experiment, etc. Next steps of optimization will be an upgrade of the HIBP-1 primary beam-line to increase ion current to the level of the HIBP-2, installation of focusing power supplies on dual HIBP diagnostic to optimize the focusing process of the primary ion beams, modify the HIBP-1 analyzer – 5 slits/20 channels. ACKNOWLEDGEMENTS The work of Kharkiv team was carried out by STCU, Project P-507F. The work of Kurchatov team was funded by Russian Science Foundation (project 14-22- 00193). A.V. Melnikov was partly supported by the Competitiveness Program of NRNU MEPhI. ISSN 1562-6016. ВАНТ. 2019. №1(119) 251 REFERENCES 1. I.S. Bondarenko et al. Installation of an Advanced HIBP on the TJ-II Stellarator // Rev. Sci. Instruments. 2001, v. 72, № 1, p. 583-585. 2. L.I. Krupnik et al. The First Operation of the Advanced Heavy Ion Beam Probing Diagnostic on the TJ-II Flexible Heliac // Fusion Engineering and Design. 2001, v. 56, p. 935-939. 3. A.V. Melnikov et al. Control and data acquisition for dual HIBP diagnostics in the TJ-II stellarator // Fusion Engineering and Design. 2015, v. 96, p. 724-728. 4. A.V. Melnikov et al. Heavy ion beam probing – diagnostics to study potential and turbulence in toroidal plasmas // Nuclear Fusion. 2017, v. 57, p. 072004. 5. A.I. Zhezhera et al. New capabilities of plasma potential and density measurements using a dual heavy ion beam probing (HIBP) diagnostic in the TJ-II stellarator // Probl. of Atom. Sci. and Techn. Ser. “Plasma Physics”. 2017, № 1(107), p. 261-264. 6. A.V. Melnikov et al. ECRH effect on the electric potential and turbulence in the TJ-II stellarator and T-10 tokamak plasmas // Plasma Phys. Control. Fusion. 2018, v. 60, p. 084008. 7. F. Castejón et al. 3D effects on transport and plasma control in the TJ-II stellarator // Nuclear Fusion. 2017, v. 57, № 10, p. 102022. 8. A.V. Melnikov et al. Transition from chirping to steady NBI-driven Alfvén modes caused by magnetic configuration variations in the TJ-II stellarator // Nuclear Fusion. 2016, v. 56, № 7, p. 076001. 9. A.V. Melnikov et al. Plasma potential and turbulence dynamics in toroidal devices (survey of T-10 and TJ-II experiments) // Nuclear Fusion. 2011, v. 51, № 7, p. 083043. 10. A.V. Melnikov, K.S. Dyabilin, L.G. Eliseev, S.E. Lysenko, Yu.N. Dnestrovskij. Measurement and Modelling of Electric Potential in the TJ-II Stellarator // Probl. of Atom. Sci. and Techn. Ser. “Thermonuclear Fusion”. 2011, v. 3, p. 54-73. 11. J.A. Alonso et al. Observation of oscillatory radial electric field relaxation in a helical plasma // Phys. Rev. Lett. 2017, v. 118, p. 185002. 12. A.V. Melnikov. Applied and fundamental aspects of fusion science // Nature Physics. 2016, v. 12, p. 386. Article received 15.12.2018 ДВОЙНАЯ ДИАГНОСТИКА ЗОНДИРОВАНИЯ ПЛАЗМЫ ПУЧКОМ ТЯЖЕЛЫХ ИОНОВ НА СТЕЛЛАРАТОРЕ TJ-II А.А. Чмыга, E. Ascasibar, J. Barcala, М.А. Драбинский, Л.Г. Елисеев, C. Hidalgo, П.О. Хабанов, С.М. Хребтов, А.Д. Комаров, А.С. Козачек, Л.И. Крупник, С.Е. Лысенко, А.В. Мельников, A. Molinero, J.L. de Pablos, С.В. Перфилов, В.Н. Зенин и TJ-II группа На стеллараторе TJ-II создана двойная система зондирования плазмы пучком тяжелых ионов (ЗППТИ). Система состоит из двух идентичных комплексов, расположенных на расстоянии ¼ тора. Первый диагностический комплекс начал действовать в 2000 году. Второй комплекс был установлен в 2012 году. Использование усилителей детекторных сигналов с низким уровнем шума (10 7 В/A) и полосой пропускания 1 МГц позволяет изучать широкополосную турбулентность и квазикогерентные моды, такие как геодезические акустические моды; альфвеновские собственные моды; моды, индуцированные надтепловыми электронами и т. д. Новые возможности двойной системы были продемонстрированы при измерениях дальних корреляций между флуктуациями, измеренными в различных полоидальних и тороидальных положениях: на одной или на разных магнитных поверхностях, в различных точках, смещенных тороидально и/или полоидально. ПОДВІЙНА ДІАГНОСТИКА ЗОНДУВАННЯ ПЛАЗМИ ПУЧКОМ ВАЖКИХ ІОНІВ НА СТЕЛАРАТОРІ TJ-II О.О. Чмига, E. Ascasibar, J. Barcala, М.А. Драбинський, Л.Г. Елісеєв, C. Hidalgo, П.О. Хабанов, С.М. Хребтов, О.Д. Комаров, О.С. Козачок, Л.І. Крупнік, С.Є. Лисенко, А.В. Мельніков, A. Molinero, J.L. de Pablos, С.В. Перфілов, В.Н. Зенін та TJ-II група На стелараторі TJ-II створена подвійна система зондування плазми пучком важких іонів (ЗППВІ). Система складається з двох ідентичних комплексів, розташованих на відстані ¼ тора. Перший діагностичний комплекс почав діяти в 2000 році. Другий комплекс був встановлений в 2012 році. Використання підсилювачів детекторних сигналів з низьким рівнем шуму (10 7 В/A) з пропускною здатністю 1 МГц дозволяє вивчати широкосмугову турбулентність та квазікогерентні режими, такі як геодезичні акустичні моди; альфвенівські моди; супертермальні моди, які збурюються швидкими електронами, тощо. Нові можливості подвійної системи були продемонстровані при вимірюваннях далеких кореляцій між флуктуаціями в різних полоїдальних та тороїдальних місцях: на одній лінії магнітного поля, на одній або на різних магнітних поверхнях у різних точках, розташованих тороїдально та/або полоїдально. http://iopscience.iop.org/journal/0029-5515 http://iopscience.iop.org/journal/0029-5515 http://iopscience.iop.org/volume/0029-5515/56 http://iopscience.iop.org/issue/0029-5515/56/7 http://iopscience.iop.org/journal/0029-5515 http://iopscience.iop.org/volume/0029-5515/56 http://iopscience.iop.org/issue/0029-5515/56/7 https://arxiv.org/search/physics?searchtype=author&query=Alonso%2C+J+A