Study of the process of thermal dissociation of tantal pentachloride in vacuum

The dependence of the degree of dissociation of TaCl₅α(T, P) vapors on the temperature in the range of 1470...1820 K in a vacuum of 1.33·10⁻² Pa was by using of equilibrium chemical thermodynamics obtained. The experimental data on the dependence of αex(Т, Р) on temperature and vapor mass flow TaCl₅...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Polyakov, Yu.I., Rudenkyi, S.G., Lukirsky, Yu.V., Konovalov, I.I., Rak, V.I.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2019
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/194942
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Study of the process of thermal dissociation of tantal pentachloride in vacuum / Yu.I. Polyakov, S.G. Rudenkyi, Yu.V. Lukirsky, I.I. Konovalov, V.I. Rak // Problems of atomic science and technology. — 2019. — № 2. — С. 141-144. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-194942
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1949422025-02-09T14:43:30Z Study of the process of thermal dissociation of tantal pentachloride in vacuum Дослідження процесу термічної дисоціації пентахлориду танталу у вукуумі Исследование процесса термической диссоциации пентахлорида тантала в вакууме Polyakov, Yu.I. Rudenkyi, S.G. Lukirsky, Yu.V. Konovalov, I.I. Rak, V.I. Physics of radiotechnology and ion-plasma technologies The dependence of the degree of dissociation of TaCl₅α(T, P) vapors on the temperature in the range of 1470...1820 K in a vacuum of 1.33·10⁻² Pa was by using of equilibrium chemical thermodynamics obtained. The experimental data on the dependence of αex(Т, Р) on temperature and vapor mass flow TaCl₅ were analyzed and compared with calculations. У рамках рівноважної хімічної термодинаміки отримана залежність ступеня дисоціації парів TaCl₅α(T, P) від температури в інтервалі 1470…1820 К і вакуумі 1,33·10⁻² Па. Проаналізовано та порівняно з розрахунковими експериментальні дані залежності αексп(Т, Р) від температури і масового потоку парів TaCl₅. В рамках равновесной химической термодинамики получена зависимость степени диссоциации паров TaCl₅α(T, P) от температуры в интервале 1470…1820 К и вакууме 1,33·10⁻² Па. Проанализированы и сравниваются расчетные данные с экспериментальными данными зависимости αэксп(Т, Р) от температуры и массового потока паров TaCl₅. 2019 Article Study of the process of thermal dissociation of tantal pentachloride in vacuum / Yu.I. Polyakov, S.G. Rudenkyi, Yu.V. Lukirsky, I.I. Konovalov, V.I. Rak // Problems of atomic science and technology. — 2019. — № 2. — С. 141-144. — Бібліогр.: 6 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/194942 621.793.16 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Physics of radiotechnology and ion-plasma technologies
Physics of radiotechnology and ion-plasma technologies
spellingShingle Physics of radiotechnology and ion-plasma technologies
Physics of radiotechnology and ion-plasma technologies
Polyakov, Yu.I.
Rudenkyi, S.G.
Lukirsky, Yu.V.
Konovalov, I.I.
Rak, V.I.
Study of the process of thermal dissociation of tantal pentachloride in vacuum
Вопросы атомной науки и техники
description The dependence of the degree of dissociation of TaCl₅α(T, P) vapors on the temperature in the range of 1470...1820 K in a vacuum of 1.33·10⁻² Pa was by using of equilibrium chemical thermodynamics obtained. The experimental data on the dependence of αex(Т, Р) on temperature and vapor mass flow TaCl₅ were analyzed and compared with calculations.
format Article
author Polyakov, Yu.I.
Rudenkyi, S.G.
Lukirsky, Yu.V.
Konovalov, I.I.
Rak, V.I.
author_facet Polyakov, Yu.I.
Rudenkyi, S.G.
Lukirsky, Yu.V.
Konovalov, I.I.
Rak, V.I.
author_sort Polyakov, Yu.I.
title Study of the process of thermal dissociation of tantal pentachloride in vacuum
title_short Study of the process of thermal dissociation of tantal pentachloride in vacuum
title_full Study of the process of thermal dissociation of tantal pentachloride in vacuum
title_fullStr Study of the process of thermal dissociation of tantal pentachloride in vacuum
title_full_unstemmed Study of the process of thermal dissociation of tantal pentachloride in vacuum
title_sort study of the process of thermal dissociation of tantal pentachloride in vacuum
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2019
topic_facet Physics of radiotechnology and ion-plasma technologies
url https://nasplib.isofts.kiev.ua/handle/123456789/194942
citation_txt Study of the process of thermal dissociation of tantal pentachloride in vacuum / Yu.I. Polyakov, S.G. Rudenkyi, Yu.V. Lukirsky, I.I. Konovalov, V.I. Rak // Problems of atomic science and technology. — 2019. — № 2. — С. 141-144. — Бібліогр.: 6 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT polyakovyui studyoftheprocessofthermaldissociationoftantalpentachlorideinvacuum
AT rudenkyisg studyoftheprocessofthermaldissociationoftantalpentachlorideinvacuum
AT lukirskyyuv studyoftheprocessofthermaldissociationoftantalpentachlorideinvacuum
AT konovalovii studyoftheprocessofthermaldissociationoftantalpentachlorideinvacuum
AT rakvi studyoftheprocessofthermaldissociationoftantalpentachlorideinvacuum
AT polyakovyui doslídžennâprocesutermíčnoídisocíacíípentahloridutantaluuvukuumí
AT rudenkyisg doslídžennâprocesutermíčnoídisocíacíípentahloridutantaluuvukuumí
AT lukirskyyuv doslídžennâprocesutermíčnoídisocíacíípentahloridutantaluuvukuumí
AT konovalovii doslídžennâprocesutermíčnoídisocíacíípentahloridutantaluuvukuumí
AT rakvi doslídžennâprocesutermíčnoídisocíacíípentahloridutantaluuvukuumí
AT polyakovyui issledovanieprocessatermičeskojdissociaciipentahloridatantalavvakuume
AT rudenkyisg issledovanieprocessatermičeskojdissociaciipentahloridatantalavvakuume
AT lukirskyyuv issledovanieprocessatermičeskojdissociaciipentahloridatantalavvakuume
AT konovalovii issledovanieprocessatermičeskojdissociaciipentahloridatantalavvakuume
AT rakvi issledovanieprocessatermičeskojdissociaciipentahloridatantalavvakuume
first_indexed 2025-11-26T23:57:43Z
last_indexed 2025-11-26T23:57:43Z
_version_ 1849899317219819520
fulltext ISSN 1562-6016. PASТ. 2019. №2(120), p. 141-144. UDC 621.793.16 STUDY OF THE PROCESS OF THERMAL DISSOCIATION OF TANTAL PENTACHLORIDE IN VACUUM Yu.I. Polyakov, S.G. Rudenkyi, Yu.V. Lukirsky, I.I. Konovalov, V.I. Rak National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine Tel. (057)335-67-82 The dependence of the degree of dissociation of TaCl5(T, P) vapors on the temperature in the range of 1470...1820 K in a vacuum of 1.3310 -2 Pa was by using of equilibrium chemical thermodynamics obtained. The experimental data on the dependence of ex (Т, Р) on temperature and vapor mass flow TaCl5 were analyzed and compared with calculations. INTRODUCTION The aim of the work is to study the process of ther- mal dissociation of tantalum pentachloride vapors in the range of 1470…1820 К in a flow vacuum system, fo- cused on achieving the possibility of obtaining coatings Ta thick 250 μm in the form of a sealed corrosion- resistant shell under irradiation with high-energy- electrons in the aquatic environment on tungsten plates of size 66663; 4; 6; 10 mm, which are neutron- forming elements of the “Source of neutrons” target. 1. EQUILIBRIUM CHEMICAL THERMODYNAMICS THERMAL DISSOCIATIONS TaCl5 The general issues of obtaining solid phase conden- sates by deposition from the gas phase using the CVD method are described in monographs [1]. A special case of the kinetics of heterogeneous reversible reactions of the type A↔vB was considered in [2]. In the specific case, the deposition of tantalum from the vapors of the pentachloride is carried out in a flow-through vacuum system (in contrast to the Van Arkel-De Boer method, which is implemented in a closed volume). The use of vacuum conditions during the thermal dissociation of TaCl5 allows the deposition of tantalum coatings at an observable rate. Reduced pressure con- tributes to an increase in the degree of conversion for reactions that occur with an increase in the number of particles in the gas phase in accordance with the princi- ple of Le Chatelier. It is the use of vacuum that allows the process of thermal dissociation of TaCl5 to produce solid tantalum. The technological parameters (substrate temperature, pressure near the condensate growth surface, specific mass flow of pentachloride vapors) determine the rate of precipitation (etching) of tantalum, as well as the struc- ture and properties of the coating. Thermodynamic cal- culations of the equilibrium of the chemical reaction used make it possible to estimate the range of changes in the technological parameters for an efficient process, and the comparison with experimental data optimizes the deposition conditions from the point of view of ob- taining coatings with desired properties. The deposition rate of tantalum is: TaV = 5TaCl 5 5),( TaCl Ta Ta TaCl St m        , (1)  – coefficient depending on the geometry of the reac- tor (empirically); ),( 5 TPTaCl – equilibrium degree of transformation TaCl5 at a pressure Р (atm) and a deposi- tion temperature Т; 5TaClm – the mass of TaCl5, sup- plied to the surface area of S for the time t ; Ta – density Ta; Ta – atomic weight Ta; 5TaCl – molecu- lar weight TaCl5. For reaction TaCl5 (g) ↔ Ta (s) + 5Cl (g), (2) running in equilibrium conditions, the value is deter- mined by the ratio:  = 55 5 4  1/  41 , (3) where  is the equilibrium constant: Ta TaCl Cl a    5 5  , (4) Cl , 5TaCl  – partial pressures Cl and TaCl5, аТа – tanta- lum activity, аТа = 1. Equilibrium constant  is associated with a change in the Gibbs free energy as a result of the reac- tion of the Gibbs-Helmholtz equation (entropy approx- imation, С = 0): reactionG = reaction 298 reactionS298 , (5) where reaction 298 and reactionS298 – changes in enthalpy and entropy, respectively: .)(.)( 298298298 inprreaction    , (6) .)(.)( 298298298 inSprSS reaction    , (7)  298 – the enthalpy of formation of each of the par- ticipating substances (pr. – reaction products, in. - initial materials) at T = 298 K,  298S – entropy, respectively, at Т = 298 K, and: KRTGreaction ln , (8) R – ideal gas constant molК J R   32,8 The validity of writing the process equation in the form (2) is confirmed by the calculation of the equilib- rium degree of dissociation 2Cl by the reaction )(2)(2 gClgCl  , (9) )1/(4 22   , (10) and 242600 107.181 (J/mol)reactionG    , (11) and reference values for standard enthalpy and entropy are given below. TaCl5(g): ∆Hf298 = -182.25 Kcal/mole [3] ∆Hf298 = -182.4 Kcal/mole = -763672 J/mol [4] S298 = 102.6 cal/mole К = 429.,566 J/(mol К) [4] Та(s): S298= 9.92 cal/mole· Кp = 41.533 J/(mol К) [4] Cl(g): ∆Hf298 = 121302 J/mol [5] S298 = 165.076 J/(mol К) [5] Cl2(g): S298 = 222.965 J/(mol К) [5] The results of calculations according to equation (10) are given in Fig.1. Fig. 1. The ratio between the degree of dissociation diatomic chlorine and temperature So, in a practically interesting temperature and pres- sure range, the value 2Cl is close to unity, which allows reasonably calculating the process equilibrium in ac- cordance with writing the reaction equation in the form (2), the change in the free energy of which, taking into account the above reference data, is: 1470182 437.347 ( / )reactionG J mol    , (12) Taking into account expressions (3), (8) and (12), we calculate the dependence of temperature on the de- gree of conversion for pressure P = 2; 0.1; 10 -4 mm Hg, respectively (Fig. 2) Fig. 2. Dependence of temperature change T, K on the degree of transformation α for reaction (2) at pressure values 266; 13.3; 1.3310 -2 Pа Fig. 3 shows the dependence of pressure on the de- gree of transformation . Fig. 3. The dependence of pressure P on the degree of transformation  according to reaction (2) for temperatures of 1473, 1573, and 1673 K The dependence of temperature on pressure for the values of the degree of transformation  = 0.1; 0.4, and 0.7 is presented in Fig. 4. Fig. 4. The dependence of temperature change on pressure for the reaction (2), where the curves are given for the degree of transformation  = 0.1; 0.4, and 0.7 The dependence of the vapor pressure of TaCl5 in the range of 298 – Тmelt in accordance with equation [6]: 6275 log 34.305 7.04log (mm Hg)       (13) graphically presented in Fig. 5. Fig. 5. The dependence of vapor pressure tantalum pentachloride TaCl5 on temperature The combination of the above data (Figs. 1–5) makes it possible to evaluate the necessary parameters of the technological process (intervals of deposition and evaporation temperatures of tantalum pentachloride, pressure in a vacuum chamber) before the Ta deposition experiments. 2. EXPERIMENTAL STUDY OF THE TAN- TAL DEPOSITION RATE DEPENDENCE ON TEMPERATURE AND MASS FLOW TaCl5 Experiments on the deposition of tantalum were done in a vacuum unit with a residual pressure of at- mospheric air of 1.3310 -2 Pа. Samples of tantalum foil with a thickness 0.3 mm and a size of 5010 mm were used as substrates. This made it possible to exclude the influence of a material other than tantalum on the depo- sition process, since tantalum pentachloride enters into chemical interaction with practically most materials at a deposition temperature Ta. For heating the samples used a water-cooled inductor made of a copper tube  101 mm as a flat Archimedes spiral turns of 6, the inductor is loaded onto the same axis and that arranged at a distance of ~ 5 mm composite (two discs) graphite disk  100 mm with a cut-out in the form of a radial sector for placement on a large disc diameter of the sample to be coated tangentially to the circumference of the discs. The edges of the sample were clamped be- tween two disks (4 mm thick each) of graphite to create an electrical contact in order to close the circular cur- rents induced in the disks, and thereby ensure heating of the samples (Fig. 6). The inductor was powered from a high-frequency installation VCHI-63-0.44, operating at a frequency of 440 kHz. Fig. 6. Scheme of the device for the study of СVD deposition process Та of ТаСl5 A graphite tube-steam line with a hole of 4 mm at its end for the expiration of tantalum pentachloride va- por entering through the steam line from the removable evaporator was placed at a distance of 5 mm perpendic- ular to the central part of the sample plane. The evapo- rator was maintained at a temperature in the range of 360...390°K with an accuracy of ± 0.5°K, set by a con- tact thermometer such as MKT with an electronic key. The change in the mass flow of tantalum pentachloride vapors to the surface of the substrate and thereby the regulation of the effective pressure in the deposition zone of the coating was achieved by changing the tem- perature of the evaporator. The amount of pentachloride evaporated during ∆t was determined by weighing the evaporator with its shutter closed before and after the experiment on the BTU-2100 scale. In this case, the evaporator was disconnected from the vacuum chamber using a detachable vacuum connection. In the course of the experiment, the temperature of the sample was con- trolled using an optical pyrometer of the “Promin” type and operated by changing the high-frequency radiation power supplied to the inductor from the VChI-63-0.44 generator. The amount of tantalum condensate deposit- ed during ∆t was determined by weighing the sample before and after the experiment using a VLR-20 type balance. The coating thickness was measured using a micrometer according to the difference of the data be- fore and after deposition, as well as using microsections. In Fig. 7 presents data on the dependence of the ex- perimental utilization factor of tantalum pentachloride αex on the substrate temperature, which is proportional to the deposition rate of the coating in equation (1). αex increases rapidly at temperatures above 1470°K until reaching saturation at ~ 1820°K. Fig. 7. Experimental dependence the yield of Ta from TaCl5 to the coating from the substrate temperature The value αex does not reach the calculated equilib- rium value α due to the presence of the coefficient β<1 in equation (1), which depends on the geometry of the reactor used and indicates the degree of unproductive scattering of tantalum pentachloride into the vacuum that is not involved in the coating condensation process under equilibrium conditions. The data in Fig. 7 refer to the value of 5 g/h of the mass flow of tantalum pen- tachloride. Fig. 8. Experimental dependence of Ta yield from TaCl5 to the coating on the TaCl5 mass flow TaCl5 ( ) and the growth rate of the coating on mass flow of vapors of TaCl5 ( ). All data obtained at a temperature of 1720 K Fig. 8 shows the dependences αex ( ) and the cor- responding deposition rate of the coating V ( ) in equa- tion (1) on the mass flow of tantalum pentachloride. The data in Fig. 8 correspond to the process at a substrate temperature of 1720 K. The yield of αex of tantalum to the tantalum pen- tachloride coating decreases from ≈ 17 to ≈ 10% with an increase in the mass flow of pentachloride from ≈ 3 to ≈ 11 g/h. This corresponds to the principle of Le Chate- lier, according to which an increase in the effective pressure should suppress the yield by reaction with an increase in the number of particles in the gas phase. So, an increase in the effective pressure P of tanta- lum pentachloride near the surface of the substrate, due to an increase in the value t mTaCl   5 in equation (1), leads to a decrease in the equilibrium yield α for the reaction under consideration. However, as α decreases, the deposition rate V in- creases (at a given temperature), since the mass flux of tantalum pentachloride, which appears in equation (1) as a linear multiplier, increases. Practically, when developing a technology for apply- ing tantalum coatings on specific products, the required consumption of pentachloride and the deposition rate of tantalum should be chosen, taking into account the na- ture of the experimental dependencies shown in Fig. 8a and 8b. This will allow both economical use of expen- sive tantalum pentachloride and optimize the tempera- ture regime of the process and, accordingly, adjust the finishing properties of coatings, which determine the operational efficiency and service life of coatings. CONCLUSIONS 1. The influence of the substrate temperature and pressure on the process of thermal dissociation of tanta- lum pentachloride vapors on the heated surface in the interval of ~ 1470…1820 К was investigated and the calculated thermodynamic equilibrium data were com- pared in comparison with experimental ones. 2. The rate of deposition of tantalum increases with increasing mass flow of vapor of its pentachloride; at the same time, the utilization rate of tantalum pentachlo- ride decreases, i.e. its unproductive losses are increasing due to vapor scattering inside the vacuum chamber. Saving costly tantalum pentachloride can be achieved by selecting the optimal process parameters based on the data of this work. REFERENCES 1. Осаждение из газовой фазы / Под ред. К. Пау- элла, Дж. Оксли и Дж. Блочера мл. / Пер. с англ. М.: «Атомиздат», 1970, 472 с. 2. Ю.И. Поляков, Г.Н. Картмазов, Ю.В. Лукир- ский и др. Кинетика пиролиза летучих соединений металлов при нанесении покрытий в вакууме // Во- просы атомной науки и техники. Серия «Физика радиационных повреждений и радиационное мате- риаловедение». 2011, №2(72), с. 163-167. 3. Термические константы веществ / Под ред. В.П. Глушко. М.: ВИНИТИ АН СССР, 1968, в. 3; 1970, в. 4, ч. 1; 1971, ч. 2; 1974, в.7, ч. 1, 2. 4. О. Кубашевский, С.Б. Олкокк. Металлургиче- ская термохимия. М., 1982, 392 с. 5. Термодинамические свойства индивидуальных веществ / Под ред. В.П. Глушко. М.: «Наука», 1978, т. 1-4. 6. К.Дж. Смитлз. Металлы: Справ. изд. / Пер. с англ. 1980, 447 с. Article received 06.03.2019 ИССЛЕДОВАНИЕ ПРОЦЕССА ТЕРМИЧЕСКОЙ ДИССОЦИАЦИИ ПЕНТАХЛОРИДА ТАНТАЛА В ВАКУУМЕ Ю.И. Поляков, С.Г. Руденький, Ю.В. Лукирский, И.И. Коновалов, В.И. Рак В рамках равновесной химической термодинамики получена зависимость степени диссоциации паров TaCl5(T, P) от температуры в интервале 1470…1820 К и вакууме 1,3310 -2 Па. Проанализированы и сравни- ваются расчетные данные с экспериментальными данными зависимости эксп(Т, Р) от температуры и массо- вого потока паров TaCl5. ДОСЛІДЖЕННЯ ПРОЦЕСУ ТЕРМІЧНОЇ ДИСОЦІАЦІЇ ПЕНТАХЛОРИДУ ТАНТАЛУ У ВУКУУМІ Ю.І. Поляков, С.Г. Руденький, Ю.В. Лукирський, І.І. Коновалов, В.І. Рак У рамках рівноважної хімічної термодинаміки отримана залежність ступеня дисоціації парів TaCl5 (T, P) від температури в інтервалі 1470…1820 К і вакуумі 1,3310 -2 Па. Проаналізовано та порівняно з роз- рахунковими експериментальні дані залежності експ (Т, Р) від температури і масового потоку парів TaCl5.