Thermophysical properties of fuel clading with various vacuum-arc coatings

The developed research technique for determining emissivity of thin-walled cylindrical samples was used to investigate, in the mode of heat transfer by radiation, thermophysical properties of Zr1Nb fuel cladding samples with different coatings deposited by vacuum-arc method. It has been shown that C...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2019
Автори: Belous, V.A., Sokolenko, V.I., Chupikov, A.A., Kuprin, A.S., Ledenyov, O.P., Ovcharenko, V.D.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2019
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/194948
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Thermophysical properties of fuel clading with various vacuum-arc coatings / V.A. Belous, V.I. Sokolenko, A.A. Chupikov, A.S. Kuprin, O.P. Ledenyov, V.D. Ovcharenko // Problems of atomic science and technology. — 2019. — № 2. — С. 99-103. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-194948
record_format dspace
spelling Belous, V.A.
Sokolenko, V.I.
Chupikov, A.A.
Kuprin, A.S.
Ledenyov, O.P.
Ovcharenko, V.D.
2023-12-01T18:35:45Z
2023-12-01T18:35:45Z
2019
Thermophysical properties of fuel clading with various vacuum-arc coatings / V.A. Belous, V.I. Sokolenko, A.A. Chupikov, A.S. Kuprin, O.P. Ledenyov, V.D. Ovcharenko // Problems of atomic science and technology. — 2019. — № 2. — С. 99-103. — Бібліогр.: 12 назв. — англ.
1562-6016
https://nasplib.isofts.kiev.ua/handle/123456789/194948
558.945:539.211:533.1
The developed research technique for determining emissivity of thin-walled cylindrical samples was used to investigate, in the mode of heat transfer by radiation, thermophysical properties of Zr1Nb fuel cladding samples with different coatings deposited by vacuum-arc method. It has been shown that CrN coating, compared to Zr1Nbbase alloy and Cr coating, can ensure a more effective heat expulsion by radiation in the event of loss-of-coolant accident and high temperature excursion This occurs according to the Stefan-Boltzmann radiation law and due to a higher value of total emissivity for CrN.
З використанням розробленої методики визначення випромінювальної здатності тонкостінних циліндричних зразків досліджено теплофізичні властивості в режимі теплопереносу випромінюванням зразків оболонки твела зі сплаву Zr1Nb з різними покриттями, нанесеними вакуумно-дуговим методом. Показано, що покриття CrN, в порівнянні з базовим сплавом Zr1Nb і покриттям Cr, може забезпечити більш ефективне знімання тепла випромінюванням у разі аварії з втратою теплоносія і підвищенням температури, що пов'язується з дією закону Стефана-Больцмана і більш високим значенням інтегрального ступеня чорноти CrN.
Используя разработанную методику определения излучательной способности тонкостенных цилиндрических образцов, исследовали теплофизические свойства в режиме теплопереноса излучением образцов оболочки твэла из сплава Zr1Nb с различными покрытиями, нанесенными вакуумно-дуговым методом. Показано, что покрытие CrN, по сравнению с базовым сплавом Zr1Nb и покрытием Cr, может обеспечить более эффективный съем тепла излучением в случае аварии с потерей теплоносителя и повышением температуры, что связывается с действием закона Стефана-Больцмана и более высоким значением интегральной степени черноты CrN.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Thermal and fast reactor materials
Thermophysical properties of fuel clading with various vacuum-arc coatings
Теплофізичні властивості оболонок твелів з різними вакуумно-дуговими покриттями
Теплофизические свойства оболочек твэлов с различными вакуумно-дуговыми покрытиями
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Thermophysical properties of fuel clading with various vacuum-arc coatings
spellingShingle Thermophysical properties of fuel clading with various vacuum-arc coatings
Belous, V.A.
Sokolenko, V.I.
Chupikov, A.A.
Kuprin, A.S.
Ledenyov, O.P.
Ovcharenko, V.D.
Thermal and fast reactor materials
title_short Thermophysical properties of fuel clading with various vacuum-arc coatings
title_full Thermophysical properties of fuel clading with various vacuum-arc coatings
title_fullStr Thermophysical properties of fuel clading with various vacuum-arc coatings
title_full_unstemmed Thermophysical properties of fuel clading with various vacuum-arc coatings
title_sort thermophysical properties of fuel clading with various vacuum-arc coatings
author Belous, V.A.
Sokolenko, V.I.
Chupikov, A.A.
Kuprin, A.S.
Ledenyov, O.P.
Ovcharenko, V.D.
author_facet Belous, V.A.
Sokolenko, V.I.
Chupikov, A.A.
Kuprin, A.S.
Ledenyov, O.P.
Ovcharenko, V.D.
topic Thermal and fast reactor materials
topic_facet Thermal and fast reactor materials
publishDate 2019
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Теплофізичні властивості оболонок твелів з різними вакуумно-дуговими покриттями
Теплофизические свойства оболочек твэлов с различными вакуумно-дуговыми покрытиями
description The developed research technique for determining emissivity of thin-walled cylindrical samples was used to investigate, in the mode of heat transfer by radiation, thermophysical properties of Zr1Nb fuel cladding samples with different coatings deposited by vacuum-arc method. It has been shown that CrN coating, compared to Zr1Nbbase alloy and Cr coating, can ensure a more effective heat expulsion by radiation in the event of loss-of-coolant accident and high temperature excursion This occurs according to the Stefan-Boltzmann radiation law and due to a higher value of total emissivity for CrN. З використанням розробленої методики визначення випромінювальної здатності тонкостінних циліндричних зразків досліджено теплофізичні властивості в режимі теплопереносу випромінюванням зразків оболонки твела зі сплаву Zr1Nb з різними покриттями, нанесеними вакуумно-дуговим методом. Показано, що покриття CrN, в порівнянні з базовим сплавом Zr1Nb і покриттям Cr, може забезпечити більш ефективне знімання тепла випромінюванням у разі аварії з втратою теплоносія і підвищенням температури, що пов'язується з дією закону Стефана-Больцмана і більш високим значенням інтегрального ступеня чорноти CrN. Используя разработанную методику определения излучательной способности тонкостенных цилиндрических образцов, исследовали теплофизические свойства в режиме теплопереноса излучением образцов оболочки твэла из сплава Zr1Nb с различными покрытиями, нанесенными вакуумно-дуговым методом. Показано, что покрытие CrN, по сравнению с базовым сплавом Zr1Nb и покрытием Cr, может обеспечить более эффективный съем тепла излучением в случае аварии с потерей теплоносителя и повышением температуры, что связывается с действием закона Стефана-Больцмана и более высоким значением интегральной степени черноты CrN.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/194948
citation_txt Thermophysical properties of fuel clading with various vacuum-arc coatings / V.A. Belous, V.I. Sokolenko, A.A. Chupikov, A.S. Kuprin, O.P. Ledenyov, V.D. Ovcharenko // Problems of atomic science and technology. — 2019. — № 2. — С. 99-103. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT belousva thermophysicalpropertiesoffuelcladingwithvariousvacuumarccoatings
AT sokolenkovi thermophysicalpropertiesoffuelcladingwithvariousvacuumarccoatings
AT chupikovaa thermophysicalpropertiesoffuelcladingwithvariousvacuumarccoatings
AT kuprinas thermophysicalpropertiesoffuelcladingwithvariousvacuumarccoatings
AT ledenyovop thermophysicalpropertiesoffuelcladingwithvariousvacuumarccoatings
AT ovcharenkovd thermophysicalpropertiesoffuelcladingwithvariousvacuumarccoatings
AT belousva teplofízičnívlastivostíobolonoktvelívzríznimivakuumnodugovimipokrittâmi
AT sokolenkovi teplofízičnívlastivostíobolonoktvelívzríznimivakuumnodugovimipokrittâmi
AT chupikovaa teplofízičnívlastivostíobolonoktvelívzríznimivakuumnodugovimipokrittâmi
AT kuprinas teplofízičnívlastivostíobolonoktvelívzríznimivakuumnodugovimipokrittâmi
AT ledenyovop teplofízičnívlastivostíobolonoktvelívzríznimivakuumnodugovimipokrittâmi
AT ovcharenkovd teplofízičnívlastivostíobolonoktvelívzríznimivakuumnodugovimipokrittâmi
AT belousva teplofizičeskiesvoistvaoboločektvélovsrazličnymivakuumnodugovymipokrytiâmi
AT sokolenkovi teplofizičeskiesvoistvaoboločektvélovsrazličnymivakuumnodugovymipokrytiâmi
AT chupikovaa teplofizičeskiesvoistvaoboločektvélovsrazličnymivakuumnodugovymipokrytiâmi
AT kuprinas teplofizičeskiesvoistvaoboločektvélovsrazličnymivakuumnodugovymipokrytiâmi
AT ledenyovop teplofizičeskiesvoistvaoboločektvélovsrazličnymivakuumnodugovymipokrytiâmi
AT ovcharenkovd teplofizičeskiesvoistvaoboločektvélovsrazličnymivakuumnodugovymipokrytiâmi
first_indexed 2025-11-24T16:10:39Z
last_indexed 2025-11-24T16:10:39Z
_version_ 1850851227795980288
fulltext ISSN 1562-6016. PASТ. 2019. №2(120), p. 99-103. UDC 558.945:539.211:533.1 THERMOPHYSICAL PROPERTIES OF FUEL CLADDING WITH VARIOUS VACUUM-ARC COATINGS V.A. Belous, V.I. Sokolenko, A.A. Chupikov, A.S. Kuprin, O.P. Ledenyov, V.D. Ovcharenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: vsokol@kipt.kharkov.ua, belous@kipt.kharkov.ua The developed research technique for determining emissivity of thin-walled cylindrical samples was used to investigate, in the mode of heat transfer by radiation, thermophysical properties of Zr1Nb fuel cladding samples with different coatings deposited by vacuum-arc method. It has been shown that CrN coating, compared to Zr1Nb- base alloy and Cr coating, can ensure a more effective heat expulsion by radiation in the event of loss-of-coolant accident and high temperature excursion This occurs according to the Stefan-Boltzmann radiation law and due to a higher value of total emissivity for CrN. INTRODUCTION Heat transfer from fuel pellets to fuel cladding and then into the coolant is an important stage of energy transformation in a thermal-neutron nuclear reactor. The heat transfer phenomenon generally is associated with the processes of heat conductivity, convection and radiation. In the case of normal reactor operation the radiation process makes an insignificant contribution to the heat transfer. In particular, according to [1] a fraction of heat radiation in thermal conductivity of the fuel-cladding contact at temperatures from 300 to 500С is ~ 2%. The situation will cardinally change during severe accident scenarios. A maximum design accident with loss of coolant has been imitated during high- temperature testing of the WWER-1000 fuel element in the reactor MIR and by computer simulation [2]. It has been shown that at cladding temperature of about 1000С the ratio of heating, convection and heat radiation in the released power is 52, 15 and 33 %, respectively. The fuel cladding temperature can be decreased by increasing the emissive power that will prevent the zirconium steam reaction (zirconium- produced gaseous hydrogen) and loss of tightness. And the emissive power of the fuel element can be increased by depositing coatings having radiative characteristics exceeding these of Zr1Nb. The deposited coating should also ensure a high resistant property of the fuel cladding in the case of the zirconium steam reaction. Note, that for the gas-cooled very high-temperature reactors (VHTR) the heat radiation becomes an important channels of heat energy dissipation and in this connection a considerable attention has been given to the emissive power of candidate materials with various coatings [3]. In view of the aforesaid there is a need for studying thermal characteristics and emissive power of various coatings on structural materials applied in the nuclear energy engineering. The goal of this study was to investigate fuel cladding samples (of Zr1Nb alloy) with different oxidation-protective zirconium coatings. Experimental data on the heart-transfer properties should be taken into account when using modified fuel elements. SAMPLES AND RESEARCH TECHNIQUES The technique of vacuum-arc coating deposition on the samples, cut from the fuel cladding (diameter 9.2 mm, wall thickness 0.65 mm), is described in [4, 5]. In experiments we used the samples having different surface states: 1) initial state, 2) ion-cleaned surface (ICS), 3-5) surface layer oxidized during different exposure time, 6–7) coated with a Cr layer of different thickness, 8) coated with a CrN layer, 9) coated with a Cu layer. The technique applied for thermophysical studies was based on the use of a heating element (HE), providing a preset power-level maintenance with a high degree of accuracy (up to 0.1%) in all experiments. A schematic diagram of the experimental device is shown in Fig. 1. A heating element comprises a cylindrical copper case of 50 mm length and an internal resistance furnace made from wire of 0.15 mm diameter bifilarly wound on a ceramic pipe. Insulation between the heater spiral coils and on their outer surface was made of the mix of beryllium oxide powder with “liquid glass” which after drying was backed at temperature of 600 C. The outer diameter of the heater working part corresponded to the internal diameter of the fuel rod that ensured a reliable thermal contact between them. The length of initial samples and samples with different coatings was 30 mm. The heater was powered by alternating-current mains. In the course of experiment the constant power level of the heater was maintained using two series- connected current stabilizers. Temperature measurements on the outer surface of the heater and samples were carried out in a vacuum chamber under residual gas pressure of about (7…8)·10 -6 Тorr in the state of stable thermal equilibrium. Temperature was measured accurate to 0.1 K. using a differential chromel-alumel thermocouple. Thermophysical characteristics of the samples of various coating material were determined under the same conditions as for heater calibration. mailto:vsokol@kipt.kharkov.ua Fig. 1. Diagram of thermophysical measurements of samples: 1 – thermocouple farening point; 2 – sample; 3 – copper block; 4 –- heater terminals; 5 – electrical insulation; 6 – filament heater; 7 – ceramic pipe; 8 – wires connecting the power source RESULTS AND DISCUSSION Fig. 2 shows the kinetics of thermal equilibrium attainment in the fuel cladding samples with different surface states (initial surface state, ion-cleaned surface, oxidized surface, chrome coated surface, chrome nitride) after heating element turning on. One can see that for a Zr1Nb sample with initial surface state and for a sample with ion-etched surface the curves T(t) differ slightly and attain the saturation (ТHE=267 and 270 С) at ts≈50 min. The curves Т(t) of the samples with oxidized surface (oxidation for =6 and 11 h at 650 С) and with the CrN coating of 5µm thickness are well coinciding and attain the saturation at lower temperature (Тs ≈ 225 С, ts≈40 min). The sample oxidized for  = 5 h is characterized by Тs = 207 K and t≈60 min. Samples coated with Cu and Cr are characterized by ts≈60…70 min and significantly higher values of saturation temperature. For the coating of Cu, the Ts = 339 °C, for the coating of Cr with a thickness of 8.8 and 4.5 μm, the Ts = 313 and 305°C, respectively. The histogram in Fig.3 gives a notion about the relation Тs for the fuel cladding samples with different surface states and coatings, and about the spread of Тs values for different samples. It is seen that for oxide and nitride coatings lower values of Тs are characteristic. As is known, CrN is a semiconductor [6] and pure zirconium dioxide is a good insulator – in it an ionic conduction is almost absent [7]. Metal coatings show higher values of Тн. A copper coating, compared to other metal coating (Сr of 4.5 µm and Cr of 8.8 µm) are characterized by a minimum value of Т=ТHE-Тs; copper has a higher heat- and electric conduction [8]. Fig. 2. Kinetics of attainment of thermal equilibrium in the samples with different surface states. The dashed line corresponds to temperature ТHE of the surface of the heating element without a fuel cladding sample Below we consider the heat transfer peculiarities in our experiments. For a cylindrical wall with a symmetric central heat source the constant linear power is characterized by a constant value of the linear heat flow in the radial direction QR (see [9]). The applied heating element design and the ratio of its dimensions to fuel cladding sample dimensions allow us to realize the condition QR = const for the initial sample and for the coatings in the form of coaxial cylinders on the fuel cladding surface. Fig. 3. Histogram of thermal equilibrium temperature values for samples with different coatings radiating in vacuum The dashed line corresponds to temperature ТHE on the surface of the heating element without a fuel cladding sample The condition of absence of other channels of heat transfer from the heating element, besides thermal radiation, permits to estimate the heat radiation characteristics for different fuel cladding coatings. To calculate the heat transfer we use the Stefan- Boltzman equation for gray bodies [9] 4 4 0 0 . 100 100 R T Ts dQ c                  (1) The radiation heat-transfer coefficient can be written in the following form [9]  0 .R R s Q T T    (2) In the above equations d –outer diameter of sample; с0=5.76·10 -8 W·m ·-2 ·K -4 – the Stefan-Boltzman constant; Тs– radiating surface temperature and Т0 – ambient temperature,  – total emissivity of radiating surface which is the ratio between the gray body total self-radiation density and absolute black body total radiation density at the same temperature. The total emissivity is the material characteristic depending of both its surface temperature and surface state. The normal total emissivity of metals can be optimized using the formula obtained by improved electromagnetic theory [10] 1 2 3 2 1 2 2 3 2 5 2 ( ) 5,76 17,9 58,6( ) ( 2 (870 5900 3250 ),) T TT T c T T               (3) where 2 m Ne    is the relaxation parameter, (m and e – mass and charge of electron, N – number of free electrons, с – velocity of light,  - resistivity). In work [11], in Fig. 3, for the Zr1Nb alloy, the temperature dependence of the electrical resistance in a wide temperature range (20…700 ºС) and in table 2 the specific electrical resistance =59 µ∙cm for T = 20 ºС is given. From these data it is easy to estimate the resistivity ≈98 µ∙cm at T=Ts=541 K. For Zr1Nb alloy at Тs=541 K and =98 µ∙сm [11], with taking into account the three first terms of formula (3), we have 0.20. Then for Zr1Nb we obtain from formula (1) QRZr1Nb=26 W·m -1 . To obtain an estimate of the degree of emissivity  of Zr1Nb fuel cladding samples, we substitute =98 μ∙cm in the formula (3) and the experimental value TH = 541 K. To obtain dimensionless Т, (T) 1/2 and (Т) 3/2 in the formula, we transform the dimension of each multiplier so as to make the reduction. We use the following ratios: 1 ∙cm = 1.11·10 -12 units of CGS with dimension [s]; 1 K = kB/h = 0.846∙10 11 with dimension [s -1 ], where kB is the Boltzmann constant, h is the Planck constant. As a result, limited to 3 terms in formula (3), we have 0.33. Then from formula (1) we obtain for Zr1Nb the value of QRZr1Nb = 41.9 W m -1 . Note that, according to the data of [12], Zr-2.5Nb alloy is characterized by an increase in  from ~ 0.28 to ~ 0.6 with an increase in the thickness of the oxide layer to ~ 0.1 μm. Considering that the linear radiation heat flow value is a constant in the case of constant power of the central heat source and using the measured surface temperature values Тs by formula (1) we obtain the estimate of emissivity for all the investigated coatings (see Table). The corresponding values of the radiation heat transfer coefficient obtained by formula (2) are given in Table. In calculations the value of Т0 = 293 К (ambient temperature) was used. Thermal and physical characteristics of the sample Sample Temperature of heating element surface ТHE, K Temperature of sample outer surface Тs, К Emissivity,  Radiation heat transfer coefficient , W·m -2 ·K -1 Zr1Nb 633 541 0.20 3.64 Cr coating, 4.5 µm 633 586 0.14 3.04 CrN coating, 5 µm 633 500 0.28 4.29 Cu coating, 1 µm 643 612 0.12 2.87 From Table it follows that the highest value of the radiation heat transfer demonstrates the CrN coating (=4.29 W·m -2 ·K -1 ), which is characterized by the highest emissivity. So, the fuel elements with CrN coating having a high resistivity relatively to the zirconium-steam reaction [4] can provide an effective heat transfer due to the thermal radiation in the event of loss-of-coolant accident. CONCLUSIONS 1. The method for studies on the radiation heat transfer from thin-wall cylindrical solids is developed. 2. Emissivity of fuel cladding samples with different coatings deposited using the vacuum-arc technique is investigated. 3. It is shown that the CrN coating, compared to the base Zr1Nb alloy and Cr coating can provide a more effective heat expulsion by radiation in the event of loss-of-coolant accident and high temperature rise. This occurs according to the Stefan-Boltzmann radiation law and due to a higher value of the total emissivity for CrN. REFERENCES 1. P.N. Strizhov, S.G. Baransky, V.I. Kolyadin. Computation of thermo-mechanical characteristics of fuels elements for power reactors: Preprint IAE-3564/4. M., 1982. 2. А.V. Aksyonov. MUZA code simulation of high- temperature testing of a WWER-1000 fuel element in the reactor // Problems of Atomic Science and Technology. Series “Nuclear Reactor Physics”. 2016, N 1, p. 91-96. 3. Emissivity of Candidate Materials for VHTR Applications: Role of Oxidation and Surface Modification Treatments. Final Report for Project: U.S. DoE-NERI Grant No.: DE-FC07-07ID14820; K. Sridharan, T. Allen, M. Anderson, G. Cao, and G. Kulcinski. University of Wisconsin, Madison, July 25th 2011. 4. A.S. Kuprin, V.A. Belous, V.N. Voyevodin, V.V. Bryk, R.L. Vasilenko, V.D. Ovcharenko, G.N. Tolmachova, P.N. Vygov. Vacuum-arc chromium- based coatings for protection of zirconium alloys from the high-temperature oxidation in air // J. Nucl. Mater. 2015, v. 465, р. 400-406. 5. А.S. Kuprin, V.А. Belous, V.V. Bryk, R.L. Vasilenko, V.N. Voyevodin, V.D. Ovcharenko, G.N. Tolmachova, I.V. Kolodij, V.M. Lunyov, I.O. Klimenko. Vacuum-arc chromium-based coatings for protection of Zr-1Nb alloy from the high- temperature oxidation in air // Problems of Atomic Science and Technology. 2015. N 2(96), p. 111-117. 6. M. Novaković, M. Popović, Z. Rakoćević, N. Bibić. Structural, optical and electrical properties of reactively sputtered CrxNy films: Nitrogen influence on the phase formation // Processing and Application of Ceramics. 2017, v. 11(1), p. 45-51. 7. V.G. Zavodinsky. On the mechanism of ion conduction in a stabilized cubic zirconium dioxide // Solid State Physics, 2004, v. 46, N 3, p. 441-445. 8. Properties of elements. In two parts. P.1. Physical properties. Reference book. Issue 2. М.: “Metalurgiya”, 1976, 600 p. (in Russian). 9. V.P. Isachenko, V.A. Osipova, A.S. Sukomel, Teploperedacha. М.: “Ehnergiya“, 1969, 440 p. (in Russia). 10. K.M. Shvaryov, B.A. Baum. On the assessment of the radiation characteristics of metals in the context of classical electron theory. // Izvestiya Vuzov. Series: Physics. 1978, N 1, p. 7-10 (in Russian). 11. V.M. Gritsyna, S.P. Klimenko, T.P. Chernya- yeva. Application of the electric resistance measuring method for studying phase transformations in Zr1Nb alloy // Voprosy Atomnoj Nauki i Tekhniki: Series “Fizika Radiatsionnykh Povrezhdenij and Reactor Materials” (89). 2006, N 4, p.204-208 (in Russian). 12. Randy W.L. Fong, Michael Paine, and Thambiayah Nitheanandan. Total hemispherical emissivity of pre-oxidized and un-oxidized Zr-2.5Nb pressure-tube materials at 600°C to 1000°C under vacuum // CNL Nuclear Review, 2016, 5(1): 85-93, https://doi.org/10.12943/CNR.2016.00006. Article received 07.11.2018 ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА ОБОЛОЧЕК ТВЭЛОВ С РАЗЛИЧНЫМИ ВАКУУМНО-ДУГОВЫМИ ПОКРЫТИЯМИ В.А. Белоус, В.И. Соколенко, А.А. Чупиков, А.С. Куприн, О.П. Леденев, В.Д. Овчаренко Используя разработанную методику определения излучательной способности тонкостенных цилиндрических образцов, исследовали теплофизические свойства в режиме теплопереноса излучением образцов оболочки твэла из сплава Zr1Nb с различными покрытиями, нанесенными вакуумно-дуговым методом. Показано, что покрытие CrN, по сравнению с базовым сплавом Zr1Nb и покрытием Cr, может обеспечить более эффективный съем тепла излучением в случае аварии с потерей теплоносителя и повышением температуры, что связывается с действием закона Стефана-Больцмана и более высоким значением интегральной степени черноты CrN. ТЕПЛОФІЗИЧНІ ВЛАСТИВОСТІ ОБОЛОНОК ТВЕЛІВ З РІЗНИМИ ВАКУУМНО-ДУГОВИМИ ПОКРИТТЯМИ В.А. Білоус, В.І. Соколенко, А.О. Чупіков, О.С. Купрін, О.П. Леденьов, В.Д. Овчаренко З використанням розробленої методики визначення випромінювальної здатності тонкостінних циліндричних зразків досліджено теплофізичні властивості в режимі теплопереносу випромінюванням зразків оболонки твела зі сплаву Zr1Nb з різними покриттями, нанесеними вакуумно-дуговим методом. Показано, що покриття CrN, в порівнянні з базовим сплавом Zr1Nb і покриттям Cr, може забезпечити більш ефективне знімання тепла випромінюванням у разі аварії з втратою теплоносія і підвищенням температури, що пов'язується з дією закону Стефана-Больцмана і більш високим значенням інтегрального ступеня чорноти CrN. https://doi.org/10.12943/CNR.2016.00006