Thermophysical properties of fuel clading with various vacuum-arc coatings
The developed research technique for determining emissivity of thin-walled cylindrical samples was used to investigate, in the mode of heat transfer by radiation, thermophysical properties of Zr1Nb fuel cladding samples with different coatings deposited by vacuum-arc method. It has been shown that C...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2019 |
| Автори: | , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/194948 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Thermophysical properties of fuel clading with various vacuum-arc coatings / V.A. Belous, V.I. Sokolenko, A.A. Chupikov, A.S. Kuprin, O.P. Ledenyov, V.D. Ovcharenko // Problems of atomic science and technology. — 2019. — № 2. — С. 99-103. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-194948 |
|---|---|
| record_format |
dspace |
| spelling |
Belous, V.A. Sokolenko, V.I. Chupikov, A.A. Kuprin, A.S. Ledenyov, O.P. Ovcharenko, V.D. 2023-12-01T18:35:45Z 2023-12-01T18:35:45Z 2019 Thermophysical properties of fuel clading with various vacuum-arc coatings / V.A. Belous, V.I. Sokolenko, A.A. Chupikov, A.S. Kuprin, O.P. Ledenyov, V.D. Ovcharenko // Problems of atomic science and technology. — 2019. — № 2. — С. 99-103. — Бібліогр.: 12 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/194948 558.945:539.211:533.1 The developed research technique for determining emissivity of thin-walled cylindrical samples was used to investigate, in the mode of heat transfer by radiation, thermophysical properties of Zr1Nb fuel cladding samples with different coatings deposited by vacuum-arc method. It has been shown that CrN coating, compared to Zr1Nbbase alloy and Cr coating, can ensure a more effective heat expulsion by radiation in the event of loss-of-coolant accident and high temperature excursion This occurs according to the Stefan-Boltzmann radiation law and due to a higher value of total emissivity for CrN. З використанням розробленої методики визначення випромінювальної здатності тонкостінних циліндричних зразків досліджено теплофізичні властивості в режимі теплопереносу випромінюванням зразків оболонки твела зі сплаву Zr1Nb з різними покриттями, нанесеними вакуумно-дуговим методом. Показано, що покриття CrN, в порівнянні з базовим сплавом Zr1Nb і покриттям Cr, може забезпечити більш ефективне знімання тепла випромінюванням у разі аварії з втратою теплоносія і підвищенням температури, що пов'язується з дією закону Стефана-Больцмана і більш високим значенням інтегрального ступеня чорноти CrN. Используя разработанную методику определения излучательной способности тонкостенных цилиндрических образцов, исследовали теплофизические свойства в режиме теплопереноса излучением образцов оболочки твэла из сплава Zr1Nb с различными покрытиями, нанесенными вакуумно-дуговым методом. Показано, что покрытие CrN, по сравнению с базовым сплавом Zr1Nb и покрытием Cr, может обеспечить более эффективный съем тепла излучением в случае аварии с потерей теплоносителя и повышением температуры, что связывается с действием закона Стефана-Больцмана и более высоким значением интегральной степени черноты CrN. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Thermal and fast reactor materials Thermophysical properties of fuel clading with various vacuum-arc coatings Теплофізичні властивості оболонок твелів з різними вакуумно-дуговими покриттями Теплофизические свойства оболочек твэлов с различными вакуумно-дуговыми покрытиями Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Thermophysical properties of fuel clading with various vacuum-arc coatings |
| spellingShingle |
Thermophysical properties of fuel clading with various vacuum-arc coatings Belous, V.A. Sokolenko, V.I. Chupikov, A.A. Kuprin, A.S. Ledenyov, O.P. Ovcharenko, V.D. Thermal and fast reactor materials |
| title_short |
Thermophysical properties of fuel clading with various vacuum-arc coatings |
| title_full |
Thermophysical properties of fuel clading with various vacuum-arc coatings |
| title_fullStr |
Thermophysical properties of fuel clading with various vacuum-arc coatings |
| title_full_unstemmed |
Thermophysical properties of fuel clading with various vacuum-arc coatings |
| title_sort |
thermophysical properties of fuel clading with various vacuum-arc coatings |
| author |
Belous, V.A. Sokolenko, V.I. Chupikov, A.A. Kuprin, A.S. Ledenyov, O.P. Ovcharenko, V.D. |
| author_facet |
Belous, V.A. Sokolenko, V.I. Chupikov, A.A. Kuprin, A.S. Ledenyov, O.P. Ovcharenko, V.D. |
| topic |
Thermal and fast reactor materials |
| topic_facet |
Thermal and fast reactor materials |
| publishDate |
2019 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Теплофізичні властивості оболонок твелів з різними вакуумно-дуговими покриттями Теплофизические свойства оболочек твэлов с различными вакуумно-дуговыми покрытиями |
| description |
The developed research technique for determining emissivity of thin-walled cylindrical samples was used to investigate, in the mode of heat transfer by radiation, thermophysical properties of Zr1Nb fuel cladding samples with different coatings deposited by vacuum-arc method. It has been shown that CrN coating, compared to Zr1Nbbase alloy and Cr coating, can ensure a more effective heat expulsion by radiation in the event of loss-of-coolant accident and high temperature excursion This occurs according to the Stefan-Boltzmann radiation law and due to a higher value of total emissivity for CrN.
З використанням розробленої методики визначення випромінювальної здатності тонкостінних циліндричних зразків досліджено теплофізичні властивості в режимі теплопереносу випромінюванням зразків оболонки твела зі сплаву Zr1Nb з різними покриттями, нанесеними вакуумно-дуговим методом. Показано, що покриття CrN, в порівнянні з базовим сплавом Zr1Nb і покриттям Cr, може забезпечити більш ефективне знімання тепла випромінюванням у разі аварії з втратою теплоносія і підвищенням температури, що пов'язується з дією закону Стефана-Больцмана і більш високим значенням інтегрального ступеня чорноти CrN.
Используя разработанную методику определения излучательной способности тонкостенных цилиндрических образцов, исследовали теплофизические свойства в режиме теплопереноса излучением образцов оболочки твэла из сплава Zr1Nb с различными покрытиями, нанесенными вакуумно-дуговым методом. Показано, что покрытие CrN, по сравнению с базовым сплавом Zr1Nb и покрытием Cr, может обеспечить более эффективный съем тепла излучением в случае аварии с потерей теплоносителя и повышением температуры, что связывается с действием закона Стефана-Больцмана и более высоким значением интегральной степени черноты CrN.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/194948 |
| citation_txt |
Thermophysical properties of fuel clading with various vacuum-arc coatings / V.A. Belous, V.I. Sokolenko, A.A. Chupikov, A.S. Kuprin, O.P. Ledenyov, V.D. Ovcharenko // Problems of atomic science and technology. — 2019. — № 2. — С. 99-103. — Бібліогр.: 12 назв. — англ. |
| work_keys_str_mv |
AT belousva thermophysicalpropertiesoffuelcladingwithvariousvacuumarccoatings AT sokolenkovi thermophysicalpropertiesoffuelcladingwithvariousvacuumarccoatings AT chupikovaa thermophysicalpropertiesoffuelcladingwithvariousvacuumarccoatings AT kuprinas thermophysicalpropertiesoffuelcladingwithvariousvacuumarccoatings AT ledenyovop thermophysicalpropertiesoffuelcladingwithvariousvacuumarccoatings AT ovcharenkovd thermophysicalpropertiesoffuelcladingwithvariousvacuumarccoatings AT belousva teplofízičnívlastivostíobolonoktvelívzríznimivakuumnodugovimipokrittâmi AT sokolenkovi teplofízičnívlastivostíobolonoktvelívzríznimivakuumnodugovimipokrittâmi AT chupikovaa teplofízičnívlastivostíobolonoktvelívzríznimivakuumnodugovimipokrittâmi AT kuprinas teplofízičnívlastivostíobolonoktvelívzríznimivakuumnodugovimipokrittâmi AT ledenyovop teplofízičnívlastivostíobolonoktvelívzríznimivakuumnodugovimipokrittâmi AT ovcharenkovd teplofízičnívlastivostíobolonoktvelívzríznimivakuumnodugovimipokrittâmi AT belousva teplofizičeskiesvoistvaoboločektvélovsrazličnymivakuumnodugovymipokrytiâmi AT sokolenkovi teplofizičeskiesvoistvaoboločektvélovsrazličnymivakuumnodugovymipokrytiâmi AT chupikovaa teplofizičeskiesvoistvaoboločektvélovsrazličnymivakuumnodugovymipokrytiâmi AT kuprinas teplofizičeskiesvoistvaoboločektvélovsrazličnymivakuumnodugovymipokrytiâmi AT ledenyovop teplofizičeskiesvoistvaoboločektvélovsrazličnymivakuumnodugovymipokrytiâmi AT ovcharenkovd teplofizičeskiesvoistvaoboločektvélovsrazličnymivakuumnodugovymipokrytiâmi |
| first_indexed |
2025-11-24T16:10:39Z |
| last_indexed |
2025-11-24T16:10:39Z |
| _version_ |
1850851227795980288 |
| fulltext |
ISSN 1562-6016. PASТ. 2019. №2(120), p. 99-103.
UDC 558.945:539.211:533.1
THERMOPHYSICAL PROPERTIES OF FUEL CLADDING WITH
VARIOUS VACUUM-ARC COATINGS
V.A. Belous, V.I. Sokolenko, A.A. Chupikov, A.S. Kuprin, O.P. Ledenyov, V.D. Ovcharenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: vsokol@kipt.kharkov.ua, belous@kipt.kharkov.ua
The developed research technique for determining emissivity of thin-walled cylindrical samples was used to
investigate, in the mode of heat transfer by radiation, thermophysical properties of Zr1Nb fuel cladding samples
with different coatings deposited by vacuum-arc method. It has been shown that CrN coating, compared to Zr1Nb-
base alloy and Cr coating, can ensure a more effective heat expulsion by radiation in the event of loss-of-coolant
accident and high temperature excursion This occurs according to the Stefan-Boltzmann radiation law and due to a
higher value of total emissivity for CrN.
INTRODUCTION
Heat transfer from fuel pellets to fuel cladding and
then into the coolant is an important stage of energy
transformation in a thermal-neutron nuclear reactor. The
heat transfer phenomenon generally is associated with
the processes of heat conductivity, convection and
radiation. In the case of normal reactor operation the
radiation process makes an insignificant contribution to
the heat transfer. In particular, according to [1] a
fraction of heat radiation in thermal conductivity of the
fuel-cladding contact at temperatures from 300 to 500С
is ~ 2%. The situation will cardinally change during
severe accident scenarios. A maximum design accident
with loss of coolant has been imitated during high-
temperature testing of the WWER-1000 fuel element in
the reactor MIR and by computer simulation [2]. It has
been shown that at cladding temperature of about
1000С the ratio of heating, convection and heat
radiation in the released power is 52, 15 and 33 %,
respectively. The fuel cladding temperature can be
decreased by increasing the emissive power that will
prevent the zirconium steam reaction (zirconium-
produced gaseous hydrogen) and loss of tightness. And
the emissive power of the fuel element can be increased
by depositing coatings having radiative characteristics
exceeding these of Zr1Nb. The deposited coating should
also ensure a high resistant property of the fuel cladding
in the case of the zirconium steam reaction.
Note, that for the gas-cooled very high-temperature
reactors (VHTR) the heat radiation becomes an
important channels of heat energy dissipation and in this
connection a considerable attention has been given to
the emissive power of candidate materials with various
coatings [3].
In view of the aforesaid there is a need for studying
thermal characteristics and emissive power of various
coatings on structural materials applied in the nuclear
energy engineering. The goal of this study was to
investigate fuel cladding samples (of Zr1Nb alloy) with
different oxidation-protective zirconium coatings.
Experimental data on the heart-transfer properties
should be taken into account when using modified fuel
elements.
SAMPLES AND RESEARCH TECHNIQUES
The technique of vacuum-arc coating deposition on
the samples, cut from the fuel cladding (diameter
9.2 mm, wall thickness 0.65 mm), is described in [4, 5].
In experiments we used the samples having different
surface states: 1) initial state, 2) ion-cleaned surface
(ICS), 3-5) surface layer oxidized during different
exposure time, 6–7) coated with a Cr layer of different
thickness, 8) coated with a CrN layer, 9) coated with a
Cu layer.
The technique applied for thermophysical studies
was based on the use of a heating element (HE),
providing a preset power-level maintenance with a high
degree of accuracy (up to 0.1%) in all experiments. A
schematic diagram of the experimental device is shown
in Fig. 1.
A heating element comprises a cylindrical copper
case of 50 mm length and an internal resistance furnace
made from wire of 0.15 mm diameter bifilarly wound
on a ceramic pipe. Insulation between the heater spiral
coils and on their outer surface was made of the mix of
beryllium oxide powder with “liquid glass” which after
drying was backed at temperature of 600 C.
The outer diameter of the heater working part
corresponded to the internal diameter of the fuel rod that
ensured a reliable thermal contact between them. The
length of initial samples and samples with different
coatings was 30 mm.
The heater was powered by alternating-current
mains. In the course of experiment the constant power
level of the heater was maintained using two series-
connected current stabilizers. Temperature
measurements on the outer surface of the heater and
samples were carried out in a vacuum chamber under
residual gas pressure of about (7…8)·10
-6
Тorr in the
state of stable thermal equilibrium. Temperature was
measured accurate to 0.1 K. using a differential
chromel-alumel thermocouple. Thermophysical
characteristics of the samples of various coating
material were determined under the same conditions as
for heater calibration.
mailto:vsokol@kipt.kharkov.ua
Fig. 1. Diagram of thermophysical measurements of
samples: 1 – thermocouple farening point; 2 – sample;
3 – copper block; 4 –- heater terminals; 5 – electrical
insulation; 6 – filament heater; 7 – ceramic pipe;
8 – wires connecting the power source
RESULTS AND DISCUSSION
Fig. 2 shows the kinetics of thermal equilibrium
attainment in the fuel cladding samples with different
surface states (initial surface state, ion-cleaned surface,
oxidized surface, chrome coated surface, chrome
nitride) after heating element turning on. One can see
that for a Zr1Nb sample with initial surface state and for
a sample with ion-etched surface the curves T(t) differ
slightly and attain the saturation (ТHE=267 and 270 С)
at ts≈50 min.
The curves Т(t) of the samples with oxidized surface
(oxidation for =6 and 11 h at 650 С) and with the CrN
coating of 5µm thickness are well coinciding and attain
the saturation at lower temperature (Тs ≈ 225 С,
ts≈40 min). The sample oxidized for = 5 h is
characterized by Тs = 207 K and t≈60 min. Samples
coated with Cu and Cr are characterized by
ts≈60…70 min and significantly higher values of
saturation temperature. For the coating of Cu, the
Ts = 339 °C, for the coating of Cr with a thickness of 8.8
and 4.5 μm, the Ts = 313 and 305°C, respectively.
The histogram in Fig.3 gives a notion about the
relation Тs for the fuel cladding samples with different
surface states and coatings, and about the spread of Тs
values for different samples. It is seen that for oxide and
nitride coatings lower values of Тs are characteristic.
As is known, CrN is a semiconductor [6] and pure
zirconium dioxide is a good insulator – in it an ionic
conduction is almost absent [7]. Metal coatings show
higher values of Тн. A copper coating, compared to
other metal coating (Сr of 4.5 µm and Cr of 8.8 µm) are
characterized by a minimum value of Т=ТHE-Тs;
copper has a higher heat- and electric conduction [8].
Fig. 2. Kinetics of attainment of thermal equilibrium in
the samples with different surface states. The dashed
line corresponds to temperature ТHE of the surface of
the heating element without a fuel cladding sample
Below we consider the heat transfer peculiarities in
our experiments. For a cylindrical wall with a
symmetric central heat source the constant linear power
is characterized by a constant value of the linear heat
flow in the radial direction QR (see [9]). The applied
heating element design and the ratio of its dimensions to
fuel cladding sample dimensions allow us to realize the
condition QR = const for the initial sample and for the
coatings in the form of coaxial cylinders on the fuel
cladding surface.
Fig. 3. Histogram of thermal equilibrium temperature
values for samples with different coatings radiating in
vacuum The dashed line corresponds to temperature
ТHE on the surface of the heating element without a fuel
cladding sample
The condition of absence of other channels of heat
transfer from the heating element, besides thermal
radiation, permits to estimate the heat radiation
characteristics for different fuel cladding coatings.
To calculate the heat transfer we use the Stefan-
Boltzman equation for gray bodies [9]
4 4
0
0 .
100 100
R
T Ts dQ c
(1)
The radiation heat-transfer coefficient can be written
in the following form [9]
0
.R
R
s
Q
T T
(2)
In the above equations d –outer diameter of sample;
с0=5.76·10
-8
W·m
·-2
·K
-4
– the Stefan-Boltzman
constant; Тs– radiating surface temperature and Т0 –
ambient temperature, – total emissivity of radiating
surface which is the ratio between the gray body total
self-radiation density and absolute black body total
radiation density at the same temperature. The total
emissivity is the material characteristic depending of
both its surface temperature and surface state.
The normal total emissivity of metals can be
optimized using the formula obtained by improved
electromagnetic theory [10]
1 2 3 2
1 2 2 3 2 5 2
( ) 5,76 17,9 58,6( ) (
2 (870 5900 3250 ),)
T TT T
c T T
(3)
where
2
m
Ne
is the relaxation parameter, (m and e –
mass and charge of electron, N – number of free
electrons, с – velocity of light, - resistivity).
In work [11], in Fig. 3, for the Zr1Nb alloy, the
temperature dependence of the electrical resistance in a
wide temperature range (20…700 ºС) and in table 2 the
specific electrical resistance =59 µ∙cm for T = 20 ºС
is given. From these data it is easy to estimate the
resistivity ≈98 µ∙cm at T=Ts=541 K.
For Zr1Nb alloy at Тs=541 K and =98 µ∙сm [11],
with taking into account the three first terms of formula
(3), we have 0.20. Then for Zr1Nb we obtain from
formula (1) QRZr1Nb=26 W·m
-1
.
To obtain an estimate of the degree of emissivity
of Zr1Nb fuel cladding samples, we substitute
=98 μ∙cm in the formula (3) and the experimental
value TH = 541 K. To obtain dimensionless Т, (T)
1/2
and (Т)
3/2
in the formula, we transform the dimension
of each multiplier so as to make the reduction. We use
the following ratios: 1 ∙cm = 1.11·10
-12
units of CGS
with dimension [s]; 1 K = kB/h = 0.846∙10
11
with
dimension [s
-1
], where kB is the Boltzmann constant, h is
the Planck constant. As a result, limited to 3 terms in
formula (3), we have 0.33. Then from formula (1) we
obtain for Zr1Nb the value of QRZr1Nb = 41.9 W m
-1
.
Note that, according to the data of [12], Zr-2.5Nb
alloy is characterized by an increase in from ~ 0.28 to
~ 0.6 with an increase in the thickness of the oxide layer
to ~ 0.1 μm.
Considering that the linear radiation heat flow value
is a constant in the case of constant power of the central
heat source and using the measured surface temperature
values Тs by formula (1) we obtain the estimate of
emissivity for all the investigated coatings (see Table).
The corresponding values of the radiation heat
transfer coefficient obtained by formula (2) are given in
Table. In calculations the value of Т0 = 293 К (ambient
temperature) was used.
Thermal and physical characteristics of the sample
Sample
Temperature of
heating element
surface ТHE, K
Temperature of
sample outer surface
Тs, К
Emissivity,
Radiation heat
transfer coefficient
, W·m
-2
·K
-1
Zr1Nb 633 541 0.20 3.64
Cr coating, 4.5 µm 633 586 0.14 3.04
CrN coating, 5 µm 633 500 0.28 4.29
Cu coating, 1 µm 643 612 0.12 2.87
From Table it follows that the highest value of the
radiation heat transfer demonstrates the CrN coating
(=4.29 W·m
-2
·K
-1
), which is characterized by the
highest emissivity.
So, the fuel elements with CrN coating having a
high resistivity relatively to the zirconium-steam
reaction [4] can provide an effective heat transfer due to
the thermal radiation in the event of loss-of-coolant
accident.
CONCLUSIONS
1. The method for studies on the radiation heat
transfer from thin-wall cylindrical solids is developed.
2. Emissivity of fuel cladding samples with
different coatings deposited using the vacuum-arc
technique is investigated.
3. It is shown that the CrN coating, compared to the
base Zr1Nb alloy and Cr coating can provide a more
effective heat expulsion by radiation in the event of
loss-of-coolant accident and high temperature rise. This
occurs according to the Stefan-Boltzmann radiation law
and due to a higher value of the total emissivity for CrN.
REFERENCES
1. P.N. Strizhov, S.G. Baransky, V.I. Kolyadin.
Computation of thermo-mechanical characteristics of
fuels elements for power reactors: Preprint IAE-3564/4.
M., 1982.
2. А.V. Aksyonov. MUZA code simulation of high-
temperature testing of a WWER-1000 fuel element in
the reactor // Problems of Atomic Science and
Technology. Series “Nuclear Reactor Physics”. 2016,
N 1, p. 91-96.
3. Emissivity of Candidate Materials for VHTR
Applications: Role of Oxidation and Surface
Modification Treatments. Final Report for Project: U.S.
DoE-NERI Grant No.: DE-FC07-07ID14820;
K. Sridharan, T. Allen, M. Anderson, G. Cao, and
G. Kulcinski. University of Wisconsin, Madison, July
25th 2011.
4. A.S. Kuprin, V.A. Belous, V.N. Voyevodin,
V.V. Bryk, R.L. Vasilenko, V.D. Ovcharenko,
G.N. Tolmachova, P.N. Vygov. Vacuum-arc chromium-
based coatings for protection of zirconium alloys from
the high-temperature oxidation in air // J. Nucl. Mater.
2015, v. 465, р. 400-406.
5. А.S. Kuprin, V.А. Belous, V.V. Bryk,
R.L. Vasilenko, V.N. Voyevodin, V.D. Ovcharenko,
G.N. Tolmachova, I.V. Kolodij, V.M. Lunyov,
I.O. Klimenko. Vacuum-arc chromium-based coatings
for protection of Zr-1Nb alloy from the high-
temperature oxidation in air // Problems of Atomic
Science and Technology. 2015. N 2(96), p. 111-117.
6. M. Novaković, M. Popović, Z. Rakoćević,
N. Bibić. Structural, optical and electrical properties of
reactively sputtered CrxNy films: Nitrogen influence on
the phase formation // Processing and Application of
Ceramics. 2017, v. 11(1), p. 45-51.
7. V.G. Zavodinsky. On the mechanism of ion
conduction in a stabilized cubic zirconium dioxide //
Solid State Physics, 2004, v. 46, N 3, p. 441-445.
8. Properties of elements. In two parts. P.1.
Physical properties. Reference book. Issue 2. М.:
“Metalurgiya”, 1976, 600 p. (in Russian).
9. V.P. Isachenko, V.A. Osipova, A.S. Sukomel,
Teploperedacha. М.: “Ehnergiya“, 1969, 440 p. (in
Russia).
10. K.M. Shvaryov, B.A. Baum. On the assessment of
the radiation characteristics of metals in the context of
classical electron theory. // Izvestiya Vuzov. Series:
Physics. 1978, N 1, p. 7-10 (in Russian).
11. V.M. Gritsyna, S.P. Klimenko, T.P. Chernya-
yeva. Application of the electric resistance measuring
method for studying phase transformations in Zr1Nb
alloy // Voprosy Atomnoj Nauki i Tekhniki: Series
“Fizika Radiatsionnykh Povrezhdenij and Reactor
Materials” (89). 2006, N 4, p.204-208 (in Russian).
12. Randy W.L. Fong, Michael Paine, and
Thambiayah Nitheanandan. Total hemispherical
emissivity of pre-oxidized and un-oxidized Zr-2.5Nb
pressure-tube materials at 600°C to 1000°C under
vacuum // CNL Nuclear Review, 2016, 5(1): 85-93,
https://doi.org/10.12943/CNR.2016.00006.
Article received 07.11.2018
ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА ОБОЛОЧЕК ТВЭЛОВ
С РАЗЛИЧНЫМИ ВАКУУМНО-ДУГОВЫМИ ПОКРЫТИЯМИ
В.А. Белоус, В.И. Соколенко, А.А. Чупиков, А.С. Куприн, О.П. Леденев, В.Д. Овчаренко
Используя разработанную методику определения излучательной способности тонкостенных
цилиндрических образцов, исследовали теплофизические свойства в режиме теплопереноса излучением
образцов оболочки твэла из сплава Zr1Nb с различными покрытиями, нанесенными вакуумно-дуговым
методом. Показано, что покрытие CrN, по сравнению с базовым сплавом Zr1Nb и покрытием Cr, может
обеспечить более эффективный съем тепла излучением в случае аварии с потерей теплоносителя и
повышением температуры, что связывается с действием закона Стефана-Больцмана и более высоким
значением интегральной степени черноты CrN.
ТЕПЛОФІЗИЧНІ ВЛАСТИВОСТІ ОБОЛОНОК ТВЕЛІВ
З РІЗНИМИ ВАКУУМНО-ДУГОВИМИ ПОКРИТТЯМИ
В.А. Білоус, В.І. Соколенко, А.О. Чупіков, О.С. Купрін, О.П. Леденьов, В.Д. Овчаренко
З використанням розробленої методики визначення випромінювальної здатності тонкостінних
циліндричних зразків досліджено теплофізичні властивості в режимі теплопереносу випромінюванням
зразків оболонки твела зі сплаву Zr1Nb з різними покриттями, нанесеними вакуумно-дуговим методом.
Показано, що покриття CrN, в порівнянні з базовим сплавом Zr1Nb і покриттям Cr, може забезпечити більш
ефективне знімання тепла випромінюванням у разі аварії з втратою теплоносія і підвищенням температури,
що пов'язується з дією закону Стефана-Больцмана і більш високим значенням інтегрального ступеня
чорноти CrN.
https://doi.org/10.12943/CNR.2016.00006
|