Estimation of the role of radiation in the plasma of electric arc discharge between Cu-C composites

This work is devoted to investigation of the radiation in the plasma of electric arc discharge between Cu-C composite electrodes and estimation of its contribution during the determination of electron density from the energy balance equation (Elenbaas-Heller). The contribution of radiation energy in...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2021
Автори: Veklich, A., Fesenko, S., Murmantsev, A., Boretskij, V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2021
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/195422
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Estimation of the role of radiation in the plasma of electric arc discharge between Cu-C composites / A. Veklich, S. Fesenko, A. Murmantsev, V. Boretskij // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 157-161. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-195422
record_format dspace
spelling Veklich, A.
Fesenko, S.
Murmantsev, A.
Boretskij, V.
2023-12-05T10:06:45Z
2023-12-05T10:06:45Z
2021
Estimation of the role of radiation in the plasma of electric arc discharge between Cu-C composites / A. Veklich, S. Fesenko, A. Murmantsev, V. Boretskij // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 157-161. — Бібліогр.: 17 назв. — англ.
1562-6016
PACS: 52.70.-m
https://nasplib.isofts.kiev.ua/handle/123456789/195422
DOI: https://doi.org/10.46813/2021-134-157
This work is devoted to investigation of the radiation in the plasma of electric arc discharge between Cu-C composite electrodes and estimation of its contribution during the determination of electron density from the energy balance equation (Elenbaas-Heller). The contribution of radiation energy in heat transfer is estimated as well. The calculation is carried out based on the preliminary experimentally obtained radial distribution of plasma temperature. For the correct solution of the energy balance equation, a Gaussian approximation of the plasma temperature profile is used. Estimation of the total current was used as a criterion for the need to take into account the radiation in the diagnostics of electric arc plasma.
Робота присвячена дослідженню випромінювання в плазмі дугового розряду між композитними Cu-C електродами та оцінці його внеску при визначенні електронної концентрації з рівняння енергетичного балансу (Еленбааса-Геллера). Також оцінюється внесок енергії випромінювання в процеси теплообміну. Розрахунок проводиться на основі попередньо експериментально отриманого радіального розподілу температури плазми. Для коректного розв’язання рівняння енергетичного балансу використовується апроксимація профілю температури плазми функцією Гаусса. Оцінка загального струму використовується як критерій необхідності врахування випромінювання в діагностиці плазми електричної дуги.
Работа посвящена исследованию излучения в плазме электродугового разряда между композитными CuC-электродами, а также оценке его вклада при определении электронной концентрации из уравнения энергетического баланса (Эленбаaса-Геллера). Также оценивается вклад энергии излучения в процессы теплообмена. Расчет проводится на основе предварительно экспериментально полученного радиального распределения температуры плазмы. Для корректного решения уравнения баланса энергии используется аппроксимация профиля температуры плазмы функцией Гаусса. Оценка полного тока используется в качестве критерия необходимости учета излучения в диагностике плазмы электрической дуги.
This work has been carried out within the framework of the EURO fusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. In addition, authors are grateful to the partial support of these studies in the frame of project 19БФ052-02 of MES of Ukraine: “Investigation of properties of lowtemperature gas-discharge plasma for technological applications”. The authors also express their gratitude to Ministry of Education and Science of Ukraine for the support of project 21БП052-01 “Applications of electric discharge plasma with condensed dispersed phase”.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Gas discharge, plasma-beam discharge, and their applications
Estimation of the role of radiation in the plasma of electric arc discharge between Cu-C composites
Оцінка ролі випромінювання в плазмі електродугового розряду між композитами Cu-C
Оценка роли излучения в плазме электродугового разряда между композитами Cu-C
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Estimation of the role of radiation in the plasma of electric arc discharge between Cu-C composites
spellingShingle Estimation of the role of radiation in the plasma of electric arc discharge between Cu-C composites
Veklich, A.
Fesenko, S.
Murmantsev, A.
Boretskij, V.
Gas discharge, plasma-beam discharge, and their applications
title_short Estimation of the role of radiation in the plasma of electric arc discharge between Cu-C composites
title_full Estimation of the role of radiation in the plasma of electric arc discharge between Cu-C composites
title_fullStr Estimation of the role of radiation in the plasma of electric arc discharge between Cu-C composites
title_full_unstemmed Estimation of the role of radiation in the plasma of electric arc discharge between Cu-C composites
title_sort estimation of the role of radiation in the plasma of electric arc discharge between cu-c composites
author Veklich, A.
Fesenko, S.
Murmantsev, A.
Boretskij, V.
author_facet Veklich, A.
Fesenko, S.
Murmantsev, A.
Boretskij, V.
topic Gas discharge, plasma-beam discharge, and their applications
topic_facet Gas discharge, plasma-beam discharge, and their applications
publishDate 2021
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Оцінка ролі випромінювання в плазмі електродугового розряду між композитами Cu-C
Оценка роли излучения в плазме электродугового разряда между композитами Cu-C
description This work is devoted to investigation of the radiation in the plasma of electric arc discharge between Cu-C composite electrodes and estimation of its contribution during the determination of electron density from the energy balance equation (Elenbaas-Heller). The contribution of radiation energy in heat transfer is estimated as well. The calculation is carried out based on the preliminary experimentally obtained radial distribution of plasma temperature. For the correct solution of the energy balance equation, a Gaussian approximation of the plasma temperature profile is used. Estimation of the total current was used as a criterion for the need to take into account the radiation in the diagnostics of electric arc plasma. Робота присвячена дослідженню випромінювання в плазмі дугового розряду між композитними Cu-C електродами та оцінці його внеску при визначенні електронної концентрації з рівняння енергетичного балансу (Еленбааса-Геллера). Також оцінюється внесок енергії випромінювання в процеси теплообміну. Розрахунок проводиться на основі попередньо експериментально отриманого радіального розподілу температури плазми. Для коректного розв’язання рівняння енергетичного балансу використовується апроксимація профілю температури плазми функцією Гаусса. Оцінка загального струму використовується як критерій необхідності врахування випромінювання в діагностиці плазми електричної дуги. Работа посвящена исследованию излучения в плазме электродугового разряда между композитными CuC-электродами, а также оценке его вклада при определении электронной концентрации из уравнения энергетического баланса (Эленбаaса-Геллера). Также оценивается вклад энергии излучения в процессы теплообмена. Расчет проводится на основе предварительно экспериментально полученного радиального распределения температуры плазмы. Для корректного решения уравнения баланса энергии используется аппроксимация профиля температуры плазмы функцией Гаусса. Оценка полного тока используется в качестве критерия необходимости учета излучения в диагностике плазмы электрической дуги.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/195422
citation_txt Estimation of the role of radiation in the plasma of electric arc discharge between Cu-C composites / A. Veklich, S. Fesenko, A. Murmantsev, V. Boretskij // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 157-161. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT veklicha estimationoftheroleofradiationintheplasmaofelectricarcdischargebetweencuccomposites
AT fesenkos estimationoftheroleofradiationintheplasmaofelectricarcdischargebetweencuccomposites
AT murmantseva estimationoftheroleofradiationintheplasmaofelectricarcdischargebetweencuccomposites
AT boretskijv estimationoftheroleofradiationintheplasmaofelectricarcdischargebetweencuccomposites
AT veklicha ocínkarolívipromínûvannâvplazmíelektrodugovogorozrâdumížkompozitamicuc
AT fesenkos ocínkarolívipromínûvannâvplazmíelektrodugovogorozrâdumížkompozitamicuc
AT murmantseva ocínkarolívipromínûvannâvplazmíelektrodugovogorozrâdumížkompozitamicuc
AT boretskijv ocínkarolívipromínûvannâvplazmíelektrodugovogorozrâdumížkompozitamicuc
AT veklicha ocenkaroliizlučeniâvplazmeélektrodugovogorazrâdameždukompozitamicuc
AT fesenkos ocenkaroliizlučeniâvplazmeélektrodugovogorazrâdameždukompozitamicuc
AT murmantseva ocenkaroliizlučeniâvplazmeélektrodugovogorazrâdameždukompozitamicuc
AT boretskijv ocenkaroliizlučeniâvplazmeélektrodugovogorazrâdameždukompozitamicuc
first_indexed 2025-11-25T23:55:43Z
last_indexed 2025-11-25T23:55:43Z
_version_ 1850590926120943616
fulltext ISSN 1562-6016. ВАНТ. 2021. № 4(134) 157 https://doi.org/10.46813/2021-134-157 ESTIMATION OF THE ROLE OF RADIATION IN THE PLASMA OF ELECTRIC ARC DISCHARGE BETWEEN Cu-C COMPOSITES A. Veklich, S. Fesenko, A. Murmantsev, V. Boretskij Taras Shevchenko National University of Kyiv, Kyiv, Ukraine E-mail: murmantsev.aleksandr@gmail.com This work is devoted to investigation of the radiation in the plasma of electric arc discharge between Cu-C com- posite electrodes and estimation of its contribution during the determination of electron density from the energy balance equation (Elenbaas-Heller). The contribution of radiation energy in heat transfer is estimated as well. The calculation is carried out based on the preliminary experimentally obtained radial distribution of plasma tempera- ture. For the correct solution of the energy balance equation, a Gaussian approximation of the plasma temperature profile is used. Estimation of the total current was used as a criterion for the need to take into account the radiation in the diagnostics of electric arc plasma. PACS: 52.70.-m INTRODUCTION The development of sliding contacts for energy transfer to a moving consumer is an important area of power industry and electrical engineering [1]. Copper and its alloys, in particular with aluminium, low-carbon or graphitized steel, powder materials based on iron, carbon and metal-carbon etc., are often used as materi- als of sliding contacts. Moreover, there is still no single solution to the problem of choosing the optimal compo- sition of contacts. First of all, it is necessary that the material used for these elements provides reliable current collection, does not undergo intense wear, be affordable and inexpen- sive. It is difficult to meet such requirements due to the fact that the material of current-collecting elements must have a number of incompatible properties, namely: good mechanical and antifriction properties, low resis- tivity and transient electrical resistance, high resistance to electrical erosion. In addition, it is necessary that the material of the current collector element guarantees reliable operation of the high-current sliding contact in difficult climatic conditions: with significant fluctua- tions in temperature, humidity and contact failure [2]. Under such extreme operating conditions, there is sig- nificant electrical erosion of the contact pair, due to the high temperature and the occurrence of breaking electric arcs. Most often, sliding contacts are based on graphite, which has excellent lubricating properties, high heat resistance and low cost. The only disadvantage of graphite is its relatively high electrical resistance, which can be reduced with copper-graphite composites. The above-mentioned electric discharge between sliding contacts leads to their intensive wear, so it is important to study such electrical erosion processes, which were partially performed by the authors of [3 - 5], who studied the effect of DC and AC arc discharge on the electrode surface. Unfortunately, in these investiga- tions the spatial resolution was not provided. Moreover, there are no works that would be devoted to estimating the effect of radiation during the diagnostics of such type of plasma. Thus, the main aim of this work is to estimate the role of the radiation in the plasma of electric arc dis- charge between composite Cu-C electrodes, as well as to provide the diagnostic of such plasma with spatial resolution. 1. ELENBAAS-HELLER EQUATION In the case of axial symmetry of the arc discharge, the energy balance equation (Elenbaas-Heller) is con- venient to write in a cylindrical coordinate system [6]:        2 1 , dT rdr E r r r r dr dr                (1) where σ(r), λ(r), T(r), ρ(r) are the radial distributions of electrical conductivity, thermal conductivity, tempera- ture and density of radiation energy, respectively. E is electric field strength of the positive column (directed along the Z axis of the cylindrical coordinate system). It should be noted, that equation (1) does not take into account the convective cooling of the arc discharge, the contribution of which can be significant. It can be seen from equation (1) that at the intro- duced power into the discharge, the consideration of radiation will affect the corresponding distributions of the transport coefficients, namely: electrical and thermal conductivity. At the known temperature and the value of the electric field strength (which are preliminary ex- perimentally determined), the behaviour of these coeffi- cients can be analysed. As follows from [7], the thermal conductivity of plasma weakly depends on admixtures of electrode origin and insignificantly differs from the thermal conductivity of pure air. However, it was found [7] that the electrical conductivity of plasma increases significantly with the addition of copper, which is ex- plained by its relatively low ionization potential. There- fore, the thermal conductivity of pure air was used in the calculation of the plasma electrical conductivity by equation (1) in this work. Plasma temperature was experimentally determined by Boltzmann plots technique. The temperature profile obtained in such manner is not a smooth function. This is primarily a consequence of the application of the Abel integral transform, which is performed by the Bockasten method at 10 points [8]. This circumstance is critical for equation (1), because it assumes finding the ISSN 1562-6016. ВАНТ. 2021. № 4(134) 158 first and second derivatives of the temperature distribu- tion. Therefore, in this work, the temperature distribu- tion was always approximated by a smooth function before substitution into equation (1). As can be seen from Fig. 1 gives a good result approximation of the Gaussian function with parameter w of the form:     2 2 0 0 . r w maxT r T T T e     (2) The obvious advantage of the approximation of the form (2) is the yield to ambient temperature T0 at sig- nificant distances r from the discharge and zero value of the first derivative on the discharge axis, where Tr=0 = Tmax. The plasma temperature between Cu-C electrodes, determined by Boltzmann plots technique, and its ap- proximation by the Gaussian function of the form (2) are shown in Fig. 1. Fig. 1. Plasma temperature distribution of electric arc discharge at a current of 30 A between composite Cu-C electrodes and its approximation by the Gaussian function Fig. 2. Electric field strength of the positive column (black curve) and the oscillogram of arc voltage (grey curve) of plasma of discharge at current of 30 A between composite Cu-C electrodes in the air The temporal evolution of the electric field strength of the positive column [9] and the voltage drop of arc discharge at current of 30 A are shown in Fig. 2. One can see, the electric field strength of arc discharge be- tween composite Cu-C electrodes is 1.5 V/mm. 2. METHOD OF RADIATION POWER ESTIMATION At the first stage, determination of the electron den- sity from the electrical conductivity of the plasma is considered. The distribution of electrical conductivity can be expressed from equation (1) in the form:         2 2 1 . dT r rdr r r rE dr dr E                (3) On the other hand, the electrical conductivity of plasma can be written as:      .e er eN r r  (4) After some transformations described in [10], equa- tions (3) and (4) can be expressed as follows:        2 0 2 ,e el e p e p el el p e m r EN r N Q E f E e m      (5) where Np is the concentration of particles of grade “p”, Qe-p is a cross section of electron scattering on particles of a grade “p”, f(Eel) is a Maxwell energy distribution function of electrons. Within the frameof this work, the scattering of elec- trons by neutral plasma particles N2, N, O2, O, NO is taken into account. The radiation power density ρ(r) of the arc discharge can be estimated indirectly at the obtained plasma tem- perature distribution T(r). Assuming that all atomic and molecular levels in plasma are populated according to the Boltzmann law, the power density of particles (at- oms, molecules, ions and molecular ions) of a corre- sponding grade "A" can be obtained by summing the intensity of all spectral lines, spectroscopic constants of which are described in the literature [11 - 15]:     , k B E k T rA A ki k ki kA hNr A g e Z      (6) where ρA(r) is the radiation power density of particles of grade “A”, h is the Planck constant, NA is the concentra- tion of particles of grade “A”, Aki is the Einstein coeffi- cient of spontaneous radiation, gk is the statistical weight of the level from which the radiation transition occurs, νki is a photon frequency, Ek is the energy of the upper level from which the transition takes place, kB is the Boltzmann constant, ZA is the partition function of the particle of grade “A”. The concentration of particles of grade “A” is the only unknown parameter in equation (6). The qualitative content of plasma is known in ad- vance, and the quantitative can be calculated by the method described in previous work [17], based on the temperature and electron density distributions. Therefore, at the initial stage the electrical conduc- tivity (1) and electron density (5) are obtained without taking into account the plasma radiation. The obtained value of the electron density is used to calculate the plasma equilibrium composition [17] in the next step. Having the obtained concentration distributions of all plasma components, its radiation can be calculated from equation (6). At the next stage, the obtained radiation distribution is substituted into equation (1) and the elec- trical conductivity of the plasma is calculated taking into account the radiation. The resulting corrected elec- ISSN 1562-6016. ВАНТ. 2021. № 4(134) 159 trical conductivity is used to determine the actual elec- tron density from equation (5). 3. RESULTS AND DISCUSSIONS The radial distribution of plasma conductivity with- out taking into account radiation was calculated (Fig. 3, ■-curve), based on the temperature distribution (see Fig. 1) and the value of the electric field strength from equation (3). The distribution of plasma current density without taking into account radiation is shown in Fig. 4 (■-curve). The total current is calculated according to the ex- pression:   0 2 . maxR I E r r dr   (7) The calculated to a radius of Rmax = 4.7 mm the total current is 19 A, although the actual discharge current is 30 A. Fig. 3. The radial distribution of the electrical conduc- tivity of electric arc plasma at a current of 30 A between composite Cu-C electrodes, calculated without (■) and with (□) taking into account the radiation Fig. 4. Radial distribution of plasma current density of electric arc discharge at arc current of 30 A between composite Cu-C electrodes, calculated without (■) and with (□) taking into account the radiation The electron density, calculated from the distribution of the electrical conductivity of plasma (without taking into account the radiation) by equation (5), is shown in Fig. 5 (■-curve). Based on the temperature and electron density distributions (obtained without taking into ac- count the radiation), the component composition of the plasma was calculated and shown in Fig. 6. It was used to obtain the plasma radiation power density by equa- tion (6). Its radial distribution is shown in Fig. 7. In the next step, the electrical conductivity of the plasma is calculated by equation (3) taking into account the con- tribution of radiation, shown in Fig. 7. The electrical conductivity distribution of arc discharge plasma at a current of 30 A between composite Cu-C electrodes is shown in Fig. 3 (□-curve). The corresponding current density distribution is shown in Fig. 4 (□-curve). Fig. 5. Radial distribution of electron density of electric arc discharge plasma at current of 30 A between composite Cu-C electrodes, calculated without (■) and with (□) taking into account the radiation Fig. 6. Radial distribution of equilibrium plasma com- position of electric arc discharge at current of 30 A between the composite Cu-C electrodes The total current of the arc discharge, calculated by equation (7) to a radius of 4.7 mm, is 27 A, which is much closer to the real (30 A) compared to the case without taking into account the radiation (19 A). Using the distribution of the electrical conductivity of the plasma, taking into account the radiation, the equation (5) was used to calculate the distribution of the electron density of plasma taking into account the radiation (see Fig. 7, □-curve). Additionally, Fig. 7 shows the distribu- tion of heat transfer in the plasma calculated as σE2, where the electrical conductivity is used, taking into account the radiation. As one can see from Fig. 7, on the axis of the discharge the radiation energy is 27% of heat transfer and can no longer be neglected. The arc discharge plasma between Cu-C electrodes contains air derivatives, atoms and ions of elements of electrode origin and various possible compounds of these elements with air components. ISSN 1562-6016. ВАНТ. 2021. № 4(134) 160 Fig. 7. Radial distribution of density of radiation power of electric arc discharge plasma at current of 30 A between composite Cu-C electrodes (□) and density of heat transferσE2in plasma (○) Fig. 8. Temperature dependence of radiation power per one atom/ion However, only the following plasma components are taken into account in this work: O2, O, O+, N2, N, N+, O2 +, N2 +, NO, NO+, Cu, Cu+, C, C+. Other components of plasma are considered insignificant due to their low concentration and high ionization potential. Although the plasma of the electric arc discharge between com- posite Cu-C electrodes (similarly to the plasma between copper electrodes) contains a large number of different particles, the main contribution to the radiation is con- tributed by copper atoms. This is illustrated by the de- pendence of the radiation power per one atom/ion (Fig. 8) calculated by equation (6) for atoms of copper, carbon, nitrogen, oxygen and copper ion. This peculiar- ity is explained by the structure of atomic (ionic) levels. Therefore, to estimate the radiation in this case, only copper atoms can be considered. It should be noted, that the emission of molecular bands were not considered in this work. However, it can play significant role and should be under careful study in the future investiga- tions. CONCLUSIONS The distributions of electrical conductivity and elec- tron density were obtained by the estimation of the energy balance of the positive column of electric arc discharge between Cu-C composite electrodes. The role of radiation energy losses was estimated and taken into account in the Elenbaas-Heller equation. It was found that the total current of the arc dis- charge with taking into account radiation was as close as possible to the real one, compared to the case with excluding radiation. Additionally, it was found that the radiation energy is 27% of heat transfer on the axis of the discharge at arc current of 30 A, and it cannot be neglected. ACKNOWLEDGEMENTS This work has been carried out within the frame- work of the EURO fusion Consortium and has received funding from the Euratom research and training pro- gramme 2014-2018 and 2019-2020 under grant agree- ment No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. In addition, authors are grateful to the partial support of these studies in the frame of project 19БФ052-02 of MES of Ukraine: “Investigation of properties of low- temperature gas-discharge plasma for technological applications”. The authors also express their gratitude to Ministry of Education and Science of Ukraine for the support of project 21БП052-01 “Applications of electric discharge plasma with condensed dispersed phase”. REFERENCES 1. S. Fesenko, V. Boretskij, A. Veklich. Pulse power supply of electric arc discharges // Bulletin of Shevchenko National University of Kyiv. 2010, v. 14, p. 51-53. 2. V.Ya. Berent. Materials and properties of electrical contacts. M.: “Intekst”, 2005, 408 p. 3. G. Wu, Y. Zhou, G. Gao, J. Wu, W. Wei. Arc Ero- sion Characteristics of Cu-Impregnated Carbon Ma- terials Used for Current Collection in High-Speed Railways // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2018, v. 8(6), p. 1014-1023. 4. W. Wangang, W. Guangning, G. Guoqiang, B. Wang, Zh. Lijun, C. Yi, L. Donglai. Experimental Study of Electrical Characteristics on Pantograph Arcing // 1st International Conference on Electric Power Equipment – Switching Technology. Xi’an – China. 2011, p. 602-607. 5. G. Guoqiang, H. Jing, W. Wenfu, H. Haixing, Zh. Guangya, W. Guangning. Dynamics of Panto- graph – Catenary Arc During the Pantograph Lower- ing Process // IEEE Transactions on Plasma Sci- ence. 2016, v. 44(11), p. 2715-2723. 6. E.I. Asinovsky, A.V. Kirillin, V.L. Nizovsky. Stabi- lized electric arcs and their application in thermo- physical experiment. M.: “Fizmatlit”, 2008, 264 p. 7. V.F. Boretskij, Y. Cressault, Ph. Teulet, A.N. Vek- lich. Plasma of electric arc discharge in carbon diox- ide with copper vapours // XVIX-th Symposium on Physics of Switching Arc. 2011, p. 5. 8. K. Bockasten. Transformation of Observed Radi- ances into Radial Distribution of the Emission of a Plasma // JOSA. 1961, v. 51(9), p. 943-947. 9. A.M. Veklich, S.O. Fesenko, L.O. Krychko, V.F. Boretskij, M.M. Kleshych, M.Ye. Holovkova. Peculiarities of electric arc discharge between com- ISSN 1562-6016. ВАНТ. 2021. № 4(134) 161 posite Cu-C electrodes // Proceedings of the Institute for Problems of Materials Science. I.N. Frantsevich National Academy of Sciences of Ukraine. Series "Composite, layered and gradient materials and coatings. Electrical contacts and electrodes." 2016, p. 36-60. 10. A. Veklich, S. Fesenko, V. Boretskij, Y. Cressault, A. Gleizes, Ph. Teulet, Y. Bondarenko, L. Kryachko. Thermal plasma of electric arc discharge in air be- tween composite Cu-C electrodes // Problems of Atomic Science and Technology. 2014, № 6(90), p. 226-229. 11. A. Zaidel'. Tables of Spectral Lines. Springer US. 1970, 782 p. 12. Yu. Ralchenko. NIST Atomic Spectra Database (version 3.1.5) [Online] / Yu. Ralchenko, A.E. Kramida, J. Reader, et al. // Gaithersburg, MD: National Institute of Standards and Technology. – accessed 17.12.2010. http://physics.nist.gov/asd3. 13. Ch. Corliss, U. Bozman. Transition Probabilities and Oscillator Strengths of 70 elements. Moscow, 1968, 562 p. 14. R.L. Kurucz. Atomic Line Data Kurucz CD-ROM № 23 / R.L. Kurucz and B. Bell – Cambridge, Mass.: Smithsonian Astrophysical Observatory, 1995. 15. C.H. Corliss. Spectral-Line Intensities and gf-Values in the First Spectrum of Copper // J. Research NBS (Phys. and Chem.). 1962, v. 66(6), p. 497-502. 16. R.L. Kurucz. Table of Semiempirical gf Values / R.L. Kurucz, E.A. Peytremann – <SAO Spec. Re- port No. 362 (1975) > 1975SAOSR.362.....K. 17. S.O. Fesenko, M.M. Kleshich, A.N. Veklich. Inves- tigation of nonequilibrium in plasma of arc dis- charge between melting electrodes // Problems of Atomic Science and Technology. 2018, № 6(118), p. 274-277. Article received 14.06.2021 ОЦЕНКА РОЛИ ИЗЛУЧЕНИЯ В ПЛАЗМЕ ЭЛЕКТРОДУГОВОГО РАЗРЯДА МЕЖДУ КОМПОЗИТАМИ Cu-C А. Веклич, С. Фесенко, А. Мурманцев, В. Борецкий Работа посвящена исследованию излучения в плазме электродугового разряда между композитными Cu- C-электродами, а также оценке его вклада при определении электронной концентрации из уравнения энер- гетического баланса (Эленбаaса-Геллера). Также оценивается вклад энергии излучения в процессы теплооб- мена. Расчет проводится на основе предварительно экспериментально полученного радиального распреде- ления температуры плазмы. Для корректного решения уравнения баланса энергии используется аппрокси- мация профиля температуры плазмы функцией Гаусса. Оценка полного тока используется в качестве крите- рия необходимости учета излучения в диагностике плазмы электрической дуги. ОЦІНКА РОЛІ ВИПРОМІНЮВАННЯ В ПЛАЗМІ ЕЛЕКТРОДУГОВОГО РОЗРЯДУ МІЖ КОМПОЗИТАМИ Cu-C А. Веклич, С. Фесенко, О. Мурманцев, В. Борецький Робота присвячена дослідженню випромінювання в плазмі дугового розряду між композитними Cu-C електродами та оцінці його внеску при визначенні електронної концентрації з рівняння енергетичного балансу (Еленбааса-Геллера). Також оцінюється внесок енергії випромінювання в процеси теплообміну. Розрахунок проводиться на основі попередньо експериментально отриманого радіального розподілу темпе- ратури плазми. Для коректного розв’язання рівняння енергетичного балансу використовується апроксимація профілю температури плазми функцією Гаусса. Оцінка загального струму використовується як критерій необхідності врахування випромінювання в діагностиці плазми електричної дуги.