Surface morphology and sputtering of FeCrAl coating on steel exposed to low-energy deuterium plasmas
Processes of sputtering and surface modification of FeCrAl coatings deposited on steel by vacuum arc was studied under the influence of low-energy (500 eV) deuterium plasma with fluence (4⋅10²⁴) D+/m² at room temperature. It was determined the composition of coatings by an energy dispersive X-ray sp...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2019 |
| Автори: | , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/195471 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Surface morphology and sputtering of FeCrAl coating on steel exposed to low-energy deuterium plasmas / V.N. Voyevodin, G.D. Tolstolutskaya, A.V. Nikitin, R.L. Vasilenko, A.S. Kuprin, V.A. Belous, V.D. Ovcharenko // Problems of atomic science and technology. — 2019. — № 6. — С. 190-194. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-195471 |
|---|---|
| record_format |
dspace |
| spelling |
Voyevodin, V.N. Tolstolutskaya, G.D. Nikitin, A.V. Vasilenko, R.L. Kuprin, A.S. Belous, V.A. Ovcharenko, V.D. 2023-12-05T11:18:54Z 2023-12-05T11:18:54Z 2019 Surface morphology and sputtering of FeCrAl coating on steel exposed to low-energy deuterium plasmas / V.N. Voyevodin, G.D. Tolstolutskaya, A.V. Nikitin, R.L. Vasilenko, A.S. Kuprin, V.A. Belous, V.D. Ovcharenko // Problems of atomic science and technology. — 2019. — № 6. — С. 190-194. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 52.40Hf, 28.52.Fa, 68.49Sf, 79.20.Rf https://nasplib.isofts.kiev.ua/handle/123456789/195471 Processes of sputtering and surface modification of FeCrAl coatings deposited on steel by vacuum arc was studied under the influence of low-energy (500 eV) deuterium plasma with fluence (4⋅10²⁴) D+/m² at room temperature. It was determined the composition of coatings by an energy dispersive X-ray spectrometer allowed to establish that the elements in the coatings are distributed more evenly when it coated in a nitrogen atmosphere. Results of erosion studies indicated that the sputtering yields for deuterium on coatings are 1.3…0.45 at./ion and at least two-three times less in comparison with initial alloys and published data for pure iron and chromium. For coatings deposited in a nitrogen atmosphere found that the obtained sputtering coefficients are almost an order of magnitude smaller in comparison with published data for pure iron and chromium and only 1.8 times higher compared to tungsten. Процеси напилення і модифікації поверхні покриттів FeCrAl, нанесених на сталь вакуумною дугою, вивчали під впливом низькоенергетичної (500 еВ) плазми дейтерію з флюенсом (4⋅10²⁴) D+/m² при кімнатній температурі. Було визначено склад покриттів за допомогою енергодисперсійного рентгенівського спектрометра: це дозволило встановити, що елементи в покритті розподіляються більш рівномірно при нанесенні покриття в атмосфері азоту. Результати ерозійних досліджень показали, що коефіцієнти розпилення дейтерію на покриттях становлять 1,3…0,45 ат./іон і, як мінімум, в два-три рази менші в порівнянні з вихідними сплавами і опублікованими даними для чистого заліза і хрому. Для покриттів, нанесених в атмосфері азоту, встановлено, що отримані коефіцієнти розпилення майже на порядок менші в порівнянні з опублікованими даними для чистого заліза і хрому та лише в 1,8 рази вищі в порівнянні з вольфрамом. Процессы напыления и модификации поверхности покрытий FeCrAl, нанесенных на сталь вакуумной дугой, изучали под воздействием низкоэнергетической (500 эВ) плазмы дейтерия с флюенсом (4⋅10²⁴) D+/m² при комнатной температуре. Был определен состав покрытий с помощью энергодисперсионного рентгеновского спектрометра: это позволило установить, что элементы в покрытии распределяются более равномерно при нанесении покрытия в атмосфере азота. Результаты эрозионных исследований показали, что коэффициенты распыления дейтерием покрытий составляют 1,3…0,45 ат./ион и, как минимум, в два-три раза меньше по сравнению с исходными сплавами и опубликованными данными для чистого железа и хрома. Для покрытий, нанесенных в атмосфере азота, установлено, что полученные коэффициенты распыления почти на порядок меньше по сравнению с опубликованными данными для чистого железа и хрома и лишь в 1,8 раза выше по сравнению с вольфрамом. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Application of accelerators in radiation technologies Surface morphology and sputtering of FeCrAl coating on steel exposed to low-energy deuterium plasmas Модифікація поверхні і розпилення FeCrAl-покриттів на сталі при дії низькоенергетичної дейтерієвої плазми Модификация поверхности и распыление FeCrAl-покрытий на стали при воздействии низкоэнергетической дейтериевой плазмы Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Surface morphology and sputtering of FeCrAl coating on steel exposed to low-energy deuterium plasmas |
| spellingShingle |
Surface morphology and sputtering of FeCrAl coating on steel exposed to low-energy deuterium plasmas Voyevodin, V.N. Tolstolutskaya, G.D. Nikitin, A.V. Vasilenko, R.L. Kuprin, A.S. Belous, V.A. Ovcharenko, V.D. Application of accelerators in radiation technologies |
| title_short |
Surface morphology and sputtering of FeCrAl coating on steel exposed to low-energy deuterium plasmas |
| title_full |
Surface morphology and sputtering of FeCrAl coating on steel exposed to low-energy deuterium plasmas |
| title_fullStr |
Surface morphology and sputtering of FeCrAl coating on steel exposed to low-energy deuterium plasmas |
| title_full_unstemmed |
Surface morphology and sputtering of FeCrAl coating on steel exposed to low-energy deuterium plasmas |
| title_sort |
surface morphology and sputtering of fecral coating on steel exposed to low-energy deuterium plasmas |
| author |
Voyevodin, V.N. Tolstolutskaya, G.D. Nikitin, A.V. Vasilenko, R.L. Kuprin, A.S. Belous, V.A. Ovcharenko, V.D. |
| author_facet |
Voyevodin, V.N. Tolstolutskaya, G.D. Nikitin, A.V. Vasilenko, R.L. Kuprin, A.S. Belous, V.A. Ovcharenko, V.D. |
| topic |
Application of accelerators in radiation technologies |
| topic_facet |
Application of accelerators in radiation technologies |
| publishDate |
2019 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Модифікація поверхні і розпилення FeCrAl-покриттів на сталі при дії низькоенергетичної дейтерієвої плазми Модификация поверхности и распыление FeCrAl-покрытий на стали при воздействии низкоэнергетической дейтериевой плазмы |
| description |
Processes of sputtering and surface modification of FeCrAl coatings deposited on steel by vacuum arc was studied under the influence of low-energy (500 eV) deuterium plasma with fluence (4⋅10²⁴) D+/m² at room temperature. It was determined the composition of coatings by an energy dispersive X-ray spectrometer allowed to establish that the elements in the coatings are distributed more evenly when it coated in a nitrogen atmosphere. Results of erosion studies indicated that the sputtering yields for deuterium on coatings are 1.3…0.45 at./ion and at least two-three times less in comparison with initial alloys and published data for pure iron and chromium. For coatings deposited in a nitrogen atmosphere found that the obtained sputtering coefficients are almost an order of magnitude smaller in comparison with published data for pure iron and chromium and only 1.8 times higher compared to tungsten.
Процеси напилення і модифікації поверхні покриттів FeCrAl, нанесених на сталь вакуумною дугою, вивчали під впливом низькоенергетичної (500 еВ) плазми дейтерію з флюенсом (4⋅10²⁴) D+/m² при кімнатній температурі. Було визначено склад покриттів за допомогою енергодисперсійного рентгенівського спектрометра: це дозволило встановити, що елементи в покритті розподіляються більш рівномірно при нанесенні покриття в атмосфері азоту. Результати ерозійних досліджень показали, що коефіцієнти розпилення дейтерію на покриттях становлять 1,3…0,45 ат./іон і, як мінімум, в два-три рази менші в порівнянні з вихідними сплавами і опублікованими даними для чистого заліза і хрому. Для покриттів, нанесених в атмосфері азоту, встановлено, що отримані коефіцієнти розпилення майже на порядок менші в порівнянні з опублікованими даними для чистого заліза і хрому та лише в 1,8 рази вищі в порівнянні з вольфрамом.
Процессы напыления и модификации поверхности покрытий FeCrAl, нанесенных на сталь вакуумной дугой, изучали под воздействием низкоэнергетической (500 эВ) плазмы дейтерия с флюенсом (4⋅10²⁴) D+/m² при комнатной температуре. Был определен состав покрытий с помощью энергодисперсионного рентгеновского спектрометра: это позволило установить, что элементы в покрытии распределяются более равномерно при нанесении покрытия в атмосфере азота. Результаты эрозионных исследований показали, что коэффициенты распыления дейтерием покрытий составляют 1,3…0,45 ат./ион и, как минимум, в два-три раза меньше по сравнению с исходными сплавами и опубликованными данными для чистого железа и хрома. Для покрытий, нанесенных в атмосфере азота, установлено, что полученные коэффициенты распыления почти на порядок меньше по сравнению с опубликованными данными для чистого железа и хрома и лишь в 1,8 раза выше по сравнению с вольфрамом.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/195471 |
| citation_txt |
Surface morphology and sputtering of FeCrAl coating on steel exposed to low-energy deuterium plasmas / V.N. Voyevodin, G.D. Tolstolutskaya, A.V. Nikitin, R.L. Vasilenko, A.S. Kuprin, V.A. Belous, V.D. Ovcharenko // Problems of atomic science and technology. — 2019. — № 6. — С. 190-194. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT voyevodinvn surfacemorphologyandsputteringoffecralcoatingonsteelexposedtolowenergydeuteriumplasmas AT tolstolutskayagd surfacemorphologyandsputteringoffecralcoatingonsteelexposedtolowenergydeuteriumplasmas AT nikitinav surfacemorphologyandsputteringoffecralcoatingonsteelexposedtolowenergydeuteriumplasmas AT vasilenkorl surfacemorphologyandsputteringoffecralcoatingonsteelexposedtolowenergydeuteriumplasmas AT kuprinas surfacemorphologyandsputteringoffecralcoatingonsteelexposedtolowenergydeuteriumplasmas AT belousva surfacemorphologyandsputteringoffecralcoatingonsteelexposedtolowenergydeuteriumplasmas AT ovcharenkovd surfacemorphologyandsputteringoffecralcoatingonsteelexposedtolowenergydeuteriumplasmas AT voyevodinvn modifíkacíâpoverhníírozpilennâfecralpokrittívnastalípridíínizʹkoenergetičnoídeiteríêvoíplazmi AT tolstolutskayagd modifíkacíâpoverhníírozpilennâfecralpokrittívnastalípridíínizʹkoenergetičnoídeiteríêvoíplazmi AT nikitinav modifíkacíâpoverhníírozpilennâfecralpokrittívnastalípridíínizʹkoenergetičnoídeiteríêvoíplazmi AT vasilenkorl modifíkacíâpoverhníírozpilennâfecralpokrittívnastalípridíínizʹkoenergetičnoídeiteríêvoíplazmi AT kuprinas modifíkacíâpoverhníírozpilennâfecralpokrittívnastalípridíínizʹkoenergetičnoídeiteríêvoíplazmi AT belousva modifíkacíâpoverhníírozpilennâfecralpokrittívnastalípridíínizʹkoenergetičnoídeiteríêvoíplazmi AT ovcharenkovd modifíkacíâpoverhníírozpilennâfecralpokrittívnastalípridíínizʹkoenergetičnoídeiteríêvoíplazmi AT voyevodinvn modifikaciâpoverhnostiiraspyleniefecralpokrytiinastaliprivozdeistviinizkoénergetičeskoideiterievoiplazmy AT tolstolutskayagd modifikaciâpoverhnostiiraspyleniefecralpokrytiinastaliprivozdeistviinizkoénergetičeskoideiterievoiplazmy AT nikitinav modifikaciâpoverhnostiiraspyleniefecralpokrytiinastaliprivozdeistviinizkoénergetičeskoideiterievoiplazmy AT vasilenkorl modifikaciâpoverhnostiiraspyleniefecralpokrytiinastaliprivozdeistviinizkoénergetičeskoideiterievoiplazmy AT kuprinas modifikaciâpoverhnostiiraspyleniefecralpokrytiinastaliprivozdeistviinizkoénergetičeskoideiterievoiplazmy AT belousva modifikaciâpoverhnostiiraspyleniefecralpokrytiinastaliprivozdeistviinizkoénergetičeskoideiterievoiplazmy AT ovcharenkovd modifikaciâpoverhnostiiraspyleniefecralpokrytiinastaliprivozdeistviinizkoénergetičeskoideiterievoiplazmy |
| first_indexed |
2025-11-24T16:10:42Z |
| last_indexed |
2025-11-24T16:10:42Z |
| _version_ |
1850851228556197888 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2019. №6(124) 190
SURFACE MORPHOLOGY AND SPUTTERING OF FeCrAl COATING
ON STEEL EXPOSED TO LOW-ENERGY DEUTERIUM PLASMAS
V.N. Voyevodin1,2, G.D. Tolstolutskaya1, A.V. Nikitin1, R.L. Vasilenko1, A.S. Kuprin1,
V.A. Belous1, V.D. Ovcharenko1
1National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine;
2V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Processes of sputtering and surface modification of FeCrAl coatings deposited on steel by vacuum arc was stud-
ied under the influence of low-energy (500 eV) deuterium plasma with fluence (4⋅1024) D+/m2 at room temperature.
It was determined the composition of coatings by an energy dispersive X-ray spectrometer allowed to establish that
the elements in the coatings are distributed more evenly when it coated in a nitrogen atmosphere. Results of erosion
studies indicated that the sputtering yields for deuterium on coatings are 1.3…0.45 at./ion and at least two-three
times less in comparison with initial alloys and published data for pure iron and chromium. For coatings deposited
in a nitrogen atmosphere found that the obtained sputtering coefficients are almost an order of magnitude smaller in
comparison with published data for pure iron and chromium and only 1.8 times higher compared to tungsten.
PACS: 52.40Hf, 28.52.Fa, 68.49Sf, 79.20.Rf
INTRODUCTION
Many candidate structural materials have been stud-
ied for developing a fusion reactor, such as ferritic/ mar-
tensitic, austenitic steels and various alloys [1]. Recent-
ly, however, FeCrAl alloys have been also considered as
a promising candidate for a fusion blanket application
[2] owing to their excellent formability, high strength,
and oxidation resistance at high temperature.
To assess the possibility to use the FeCrAl alloys as
plasma-facing materials, there is a need to examine a
behavior of these materials under plasma exposure.
Sputtering of plasma-facing materials due to interaction
with energetic ions (particularly hydrogen isotopes) is
an essential issue in magnetically confined fusion de-
vices because it is directly related to impurity generation
as well as to the lifetime of plasma − facing components
[3]. For a better understanding of the sputtering pro-
cesses on elements of FeCrAl alloys it is necessary first-
ly to know the sputtering of FeCrAl as whole.
The goal of this work is to experimentally determine
the sputtering yields and surface morphology change of
FeCrAl coatings exposed to low-energy, high-flux deu-
terium plasma and compares the obtained data of sputter-
ing yields with existing published data for Fe, Cr, and W.
1. MATERIAL AND METHODS
Experiments for coatings deposition were carried out
in a vacuum arc setup equipped with a plasma source
with magnetic confinement of the cathode spot [4].
The commercial Kanthal-type FeCrAl alloys were
used as cathodes with diameter 60 mm. The chemical
compositions of this alloy are specified in Table 1. The
arc discharge current in all experiments was 100 A. The
plasma source was mounted on a flange of a vacuum
chamber with a diameter and a length of 500 mm. The
coatings were deposited on polished stainless steel
(18Cr10NiTi) samples Ø-20 mm, thickness of 3 mm,
which were placed on a substrate holder in the center of
the chamber at a distance of 250 mm from the cathode.
Table 1
Typical nominal and measured compositions of Kanthal-type alloy FeCrAl
Initial bar
(commercial)
Concentration, wt. %
Fe Cr Al Other elements
nominal bal. 22…24 5…5.8 Si - to 0.5 Ti- 0.2-0.5 Mn- to 0.3 Ni- to 0.6
measured bal. 22.65±0.05 4.04±0.02 0.53±0.03 0.21±0.08 0.28±0.06 0.13±0.06
Before deposition of coatings, the chamber was
pumped out by a diffusion pump to a residual gas pres-
sure of ~ 10-3 Pa and the samples surface was sputtered
with metal plasma of the cathode material for 3 min at a
negative voltage on the substrate holder of 1300 V.
Coatings were deposited in vacuum of ~ 2⋅10-3 Pa (series
F1) and at a pressure of nitrogen (series F2) in the
chamber ~ 0.05 Pa for 60 min. The rotation speed of the
samples during deposition is ~ 9 rpm. The negative bias
potential on the samples was -50 V, and the temperature
~ 450°C.
The thickness of the deposited coatings was measured
using an MII-4 optical interference microscope by the
“shadow knives” method and were ~ 20 μm in all cases.
The specimens have been irradiated with deuterium
ions using glow gas-discharge plasma at 1000 V. The
design and principle of operation of the gaseous plasma
source used for irradiation of the samples is described in
detail in [5]. The specimen temperature was measured by
the thermocouple and was (30±2.5)°C during irradiation.
The dominant ion component generated in the ion
source is D2
+. This ion was chosen as the bombarding
species to achieve higher particle fluxes. These molecu-
lar D2
+ ions are considered to be identical to 2 individu-
al D ions impinging with the same velocity as the mo-
lecular ion. Breakup of the molecular D2
+ ions on the
target surface results in emergence of two D atoms with
the kinetic energy of 1/2 experimentally applied ion
energy and the flux is two times the measured ion flux.
In our experiments the FeCrAl targets were sputtered
with atomic D+ ions at the ion energy of 500 eV with
flux of 3.2⋅1020 m–2⋅s–1. The maximum irradiation flu-
ISSN 1562-6016. ВАНТ. 2019. №6(124) 191
ence was 4⋅1024 m–2. The experimental ion flux and flu-
ence were calculated from the measured ion currents
and beam spot areas.
The erosion yield was primarily evaluated by a
weight-loss technique. Before and after plasma exposure,
the weight of each target was measured by a microbal-
ance system, and the erosion rate was then calculated
from the weight loss and the total deuterium fluence.
Investigations of surface microstructure before and
after irradiation were performed using scanning electron
microscope JEOL JSM-7001F. Chemical composition
of the FeCrAl coatings was determined by energy dis-
persive X-ray spectroscopy – EDS.
2. RESULTS AND DISCUSSION
Fig. 1 shows an SEM image the surface microstruc-
ture of the coating series F1 in the initial state and ele-
ment maps. The corresponding elemental concentrations
of EDS scans are given in Table 2. It should be noted
that elements concentration given in the table as spec-
trum # 1 was determined by scanning over a sufficiently
large area (about 1 mm2) and as spectrum #2-6 at indi-
vidual “points” (size of 5…10 μm2).
a b
c d
Fig. 1. SEM image (a) and EDS mapping of FeCrAl coatings series F1 (b, c, d) in initial state
Table 2
Measured compositions of FeCrAl coatings series F1 in initial state
Spectrum Concentration, wt. %
Element Fe Cr Al Si Ti Ni
# 1 65.78 34.01 0.21 - - -
# 2 74.77 20.82 3.11 0.85 0.22 0.23
# 3 69.05 30.45 0.5 - - -
# 4 68.72 30.77 0.51 - - -
# 5 65.98 34.02 - - - -
# 6 65.75 34.25 - - - -
The surface of the coating’s series F1 in the initial
state was smooth with exhibit specific features as une-
venly distributed plates that are irregular in shape and a
wide range of sizes. EDS scan a sufficiently large area
(spectrum #1) and surface without plates (spectra # 5, 6)
indicates that coating is composed of Fe and Crwith a
minor amount of aluminum. Aluminum is mainly found
in some plates (spectrum # 2).
Fig. 2 shows an SEM image the surface microstruc-
ture of the coating series F2 in the initial state and cor-
responding element maps. The chemical compositions
for this alloy are specified in Table 3.
A distinctive feature of series F2 coatings is their
more complex composition and almost uniform distribu-
tion of elements over the sample. It should also be noted
the presence of a significant amount of nitrogen and, in
some cases, oxygen. The surface morphology of the F2
series coatings is presented in the form of scales, plates,
and macroparticles with an irregular surface (see
Fig. 2,a). Concentrations of nitrogen, oxygen, titani-
umand zirconium for these structural elements of the
surface are differed (see Fig. 2 and Table 3).
ISSN 1562-6016. ВАНТ. 2019. №6(124) 192
a b c
d e f
Fig. 2. SEM image (a) and EDS mapping of FeCrAl coatings series F2 (b, c, d, e, f)
Table 3
Measured compositions of FeCrAl coatings series F2 in initial state
Spectrum Concentration, wt.%
Fe Cr Al N O Si Ti Mn Zr
# 1 62.73 23.35 3.43 7.61 0.06 0.17 0.16 0.38 1.84
# 2 56.36 21.26 3.48 9.08 4.96 1.11 0.57 0.38 3.00
# 3 56.26. 21.86 2.58 6.60 6.36 1.13 1.26 - 4.56
# 4 65.79 22.14 2.89 7.39 1.79 - - - -
The evolution of the surface of coating F1 (Fig. 3,a)
due to the sputtering process after exposure to a high-
density deuterium plasma is shown in Fig. 3,b-d. Small
macroparticles were completely sputtered, while large
particles were reduced in size and, in addition, areas
towering above their surface were sputtered. EDS point
scan indicates that composition of surface and macro-
particlesis contained of elements which consistent with
the sputtering target (see Table 2). The details of the
surface at higher magnification (see Fig. 3,c,d) are
shown that in addition to sputtering the surface plates,
sputtering and expansion of cracks occur.
a b
c d
Fig. 3. Plan-view of the coating series F1 before (a) and after sputtering (b).
The details of the surface (b) at higher magnification (c, d)
ISSN 1562-6016. ВАНТ. 2019. №6(124) 193
In the case coating of series F2 (Fig. 4,a) after ex-
posed to plasma the surface plates were sputtered almost
completely (Fig. 4,b). Large “cauliflower” − like defects
also slightly sputtered but still retained their shape. No
cracks on the surface were noted.
a b
Fig. 4. Plan-view of the of the coating series F2 before (a) and after sputtering (b)
The details SEM image of the surface coatings series
F2 (Fig. 4,b) at higher magnification shown in Fig. 5.
Can be seen the surface with a cellular structure (see
Fig. 5,a). In several places, the formation of structures
resembling an accumulation of microscale “barrels” was
recorded (see Fig. 5,b). The corresponding elemental
concentrations of EDS scans for site with almost com-
pletely sputtered plates and “barrels” are given in Ta-
ble 4.
a b
Fig. 5. The details SEM image of the surface coatings series F2 (Fig. 4, b) at higher magnification:
site with almost completely sputtered plates (a) and structures resembling “barrels” (b)
Table 4
Measured compositions of FeCrAl coatings F2
after sputtering
Spectrum Concentration, wt. %
Fe Cr Al N O
# 1 61.94 22.29 4.13 8.73 2.19
# 2 9.26 47.44 0.33 3.63 39.35
As seen from Table 4 the corresponding elemental
composition for places with almost completely sputtered
plates (spectrum #1) almost coincides with measured
compositions of FeCrAl coatings series F2 in initial
state (see Table 3). An elemental concentration of EDS
scans for site with “barrels” (spectrum # 2) shows iron,
aluminium and nitrogen depletion and chromium and
oxygen enrichment. The high chromium (47.44 wt. %)
and oxygen (39.35 wt. %) content in “barrels” indicates
the formation of Cr2O3.
As noted above in our experiment’s deuterium plas-
mas sputtering erosion of FeCrAl coating was obtained
using the weight loss technique. The sputtering yield
was then calculated from the weight loss and the total
deuterium fluence.
Fig. 6. Experimentally determined sputtering yields of FeCrAl alloys and coatings series F1 and F2.
For comparison sputtering yields of Fe, Cr and W are shown [8]
ISSN 1562-6016. ВАНТ. 2019. №6(124) 194
Fig. 6 shows the results for the sputtering yield of
FeCrAl coatingin comparison with FeCrAl alloy that
were used as cathodes [6] and published data of pure
iron, chromium and W sputtering yields determined
experimentally and by numerical simulation [7, 8].
As seen in Fig. 6, values of the experimentally
measured sputtering yield of the FeCrAl coatings series
F1 exposed to the D plasma are one and a half times
lower compared to Kanthal-type sample and its remelt-
ed version and three times compared to Fe and Cr. The
FeCrAl coatings series F2 have the sputtering coeffi-
cient 0.45⋅10-2 at./D which is almost an order of magni-
tude smaller comparison with published data for pure
iron, chromium. It should be noted that the sputtering
coefficients of the coatings F2 deposited in nitrogen are
only 1.8 times higher compared to tungsten. At present,
the sputtering coefficient of tungsten with hydrogen
isotopes is considered to be the lowest. FeCrAl coatings
with middle-Z admixed elements can been considered
as a candidate for armor materials of plasma-facing
components of tokamak devices.
CONCLUSIONS
Processes of sputtering and surface modification of
FeCrAl coatings deposited on steel by vacuum arc was
studied under the influence of low-energy (500 eV) deu-
terium plasma with fluence 4⋅1024 D+/m2 at room tem-
perature.
The structures that were firstly sputtered are the
flakes, plates and macroparticles with an irregular sur-
face that were deposited on the surface at construction
of coatings.
The sputtering yields for deuterium on coatings are
1.3…0.45 at./ion and at least two-three times less in
comparison with initial alloys and published data for
pure iron and chromium. For coatings deposited in a
nitrogen atmosphere found that the obtained sputtering
coefficients are almost an order of magnitude smaller in
comparison with published data for pure iron and chro-
mium and only 1.8 times higher compared to tungsten
Results reported in this work to be of interest for an
understanding of mechanisms of possible formation of
erosion structures on the FeCrAl coatings surfaces un-
der exposure to the deuterium plasmas and predicting
possibilities of using these coatings as of plasma − fac-
ing materials of fusion reactors.
REFERENCES
1. Y. Yamamoto, B.A. Pint, K.A. Terrani, K.G. Field,
Y. Yang, L.L. Snead. Development and property
evaluation of nuclear grade wrought FeCrAl fuel
cladding for light water reactors // Journal of Nucle-
ar Materials. 2015, v. 467(2), p. 703-716.
2. B.A. Pint, S. Dryepondt, K.A. Unocic, D.T. Hoelzer.
Development of ODS FeCrAl for compatibility in fusion
and fission energy applications // Journal of the Minerals
Metals and Materials Society. 2014, v. 66, p. 2458-2466.
3. P. Sigmund. Theory of sputtering. I. Sputtering
yields of amorphous and polycrystalline targets //
Physical Review. 1969, v. 184, p. 383-345.
4. I.I. Aksenov, V.A. Belous, Yu.A. Zadneprovskiy, et
al. Influence of nitrogen pressure on silicon content
in Ti-Si-N coatings deposited by the vacuum-arc
method // Proceedings - International Symposium on
Discharges and Electrical Insulation in Vacuum,
ISDEIV. 2010, № 5625887, p. 497-500.
5. A.V. Nikitin, G.D. Tolstolutskaya, V.V. Ruzhytskyi,
V.N. Voyevodin, et al. Blister formation on
13Cr2MoNbVB ferritic-martensitic steel exposed to
hydrogen plasma // Journal of Nuclear Materials.
2016, v. 478, p. 26-31.
6. G.D. Tolstolutskaya, M.A. Tikhonovsky, V.N. Voyevodin,
et al. Surface modification and sputtering of FeCrAl alloys
exposed to low-energy hydrogen plasmas // Journal of the
Belarusian State University. Physics. 2019, v. 3, p. 73-80.
7. H.H. Andersen, H.L. Bay. Sputtering yield meas-
urements. In: Behrisch R, editor. Sputtering by Par-
ticle Bombardment. I. Physical Sputtering of Single-
Element Solids. Berlin: Springer; 1981, p. 145-218.
8. K. Sugiyama, K. Schmid, W. Jacob. Sputtering of
iron, chromium and tungsten by energetic deuterium
ion bombardment // Nuclear Materials and Energy.
2016, v. 8, p. 1-7.
Article received 11.10.2019
МОДИФИКАЦИЯ ПОВЕРХНОСТИ И РАСПЫЛЕНИЕ FeCrAl-ПОКРЫТИЙ НА СТАЛИ
ПРИ ВОЗДЕЙСТВИИ НИЗКОЭНЕРГЕТИЧЕСКОЙ ДЕЙТЕРИЕВОЙ ПЛАЗМЫ
В.Н. Воеводин, Г.Д. Толстолуцкая, А.В. Никитин, Р.Л. Василенко, А.С. Куприн, В.А. Белоус, В.Д. Овчаренко
Процессы напыления и модификации поверхности покрытий FeCrAl, нанесенных на сталь вакуумной дугой, изучали
под воздействием низкоэнергетической (500 эВ) плазмы дейтерия с флюенсом 4⋅1024 D+/м2 при комнатной температуре.
Был определен состав покрытий с помощью энергодисперсионного рентгеновского спектрометра: это позволило уста-
новить, что элементы в покрытии распределяются более равномерно при нанесении покрытия в атмосфере азота. Ре-
зультаты эрозионных исследований показали, что коэффициенты распыления дейтерием покрытий составляют
1,3…0,45 ат./ион и, как минимум, в два-три раза меньше по сравнению с исходными сплавами и опубликованными дан-
ными для чистого железа и хрома. Для покрытий, нанесенных в атмосфере азота, установлено, что полученные коэффи-
циенты распыления почти на порядок меньше по сравнению с опубликованными данными для чистого железа и хрома и
лишь в 1,8 раза выше по сравнению с вольфрамом.
МОДИФІКАЦІЯ ПОВЕРХНІ І РОЗПИЛЕННЯ FeCrAl-ПОКРИТТІВ НА СТАЛІ
ПРИ ДІЇ НИЗЬКОЕНЕРГЕТИЧНОЇ ДЕЙТЕРІЄВОЇ ПЛАЗМИ
В.М. Воєводін, Г.Д. Толстолуцька, А.В. Нікітін, Р.Л. Василенко, О.С. Купрін, В.А. Білоус, В.Д. Овчаренко
Процеси напилення і модифікації поверхні покриттів FeCrAl, нанесених на сталь вакуумною дугою, вивчали під
впливом низькоенергетичної (500 еВ) плазми дейтерію з флюенсом 4⋅1024 D+/м2 при кімнатній температурі. Було визна-
чено склад покриттів за допомогою енергодисперсійного рентгенівського спектрометра: це дозволило встановити, що
елементи в покритті розподіляються більш рівномірно при нанесенні покриття в атмосфері азоту. Результати ерозійних
досліджень показали, що коефіцієнти розпилення дейтерію на покриттях становлять 1,3…0,45 ат./іон і, як мінімум, в
два-три рази менші в порівнянні з вихідними сплавами і опублікованими даними для чистого заліза і хрому. Для покрит-
тів, нанесених в атмосфері азоту, встановлено, що отримані коефіцієнти розпилення майже на порядок менші в порів-
нянні з опублікованими даними для чистого заліза і хрому та лише в 1,8 рази вищі в порівнянні з вольфрамом.
|