Інтегральні рівняння плоских задач термомеханіки біматеріальних тіл із неідеальним контактом складових із матеріалів зі зв’язаними полями

Запропоновано матрично-векторний підхід на основі узагальненого формалізму Стро для математичного моделювання плоских задач термомеханіки в біматеріальних тілах. На основі останнього побудовано інтегральні формули та рівняння для моделювання біматеріальних тіл, виготовлених із матеріалів зі зв’язани...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Пастернак, В.В., Сулим, Г.Т.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Видавничий дім "Академперіодика" НАН України 2025
Назва видання:Доповіді НАН України
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/206534
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Інтегральні рівняння плоских задач термомеханіки біматеріальних тіл із неідеальним контактом складових із матеріалів зі зв’язаними полями / В.В. Пастернак, Г.Т. Сулим // Доповіді Національної академії наук України. — 2025. — № 3. — С. 33-47. — Бібліогр.: 14 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Запропоновано матрично-векторний підхід на основі узагальненого формалізму Стро для математичного моделювання плоских задач термомеханіки в біматеріальних тілах. На основі останнього побудовано інтегральні формули та рівняння для моделювання біматеріальних тіл, виготовлених із матеріалів зі зв’язаними фізичними полями (піроелектриків, термомагнітоелектропружних тіл та термопружних квазікристалів). Окрему увагу приділено врахуванню впливу неідеального контакту на внутрішній межі поділу матеріалів. Отримані інтегральні формули та рівняння для опису стану двокомпонентних тіл із матеріалів зі зв’язаними полями автоматично враховують характерний тип неідеального теплового та магніто-електро-механічного контакту на міжфазній поверхні та не містять невластивих інтегралів уздовж останньої. Це дає можливість як аналітичного вивчення розглянутих кусково-однорідних тіл, так і зменшення за потреби кількості ступенів вільності дискретизованої задачі за збереження належної точності при їхньому числовому розв’язуванні.