Поиск циклов нелинейных периодических дискретных систем с помощью метода усредненного прогнозирующего управления

Динаміка навіть найпростіших нелінійних стаціонарних дискретних систем є досить складною. Вона включає в себе як періодичні рухи, так і квазіперіодичні або рекурентні. У таких системах майже завжди присутні хаотичні атрактори, природа яких на сьогодні досить добре вивчена для широкого класу модель-н...

Full description

Saved in:
Bibliographic Details
Date:2020
Main Authors: Дмитришин, Д.В., Стоколос, А.М., Якоб, И.Э.
Format: Article
Language:Russian
Published: Інститут кібернетики ім. В.М. Глушкова НАН України 2020
Series:Проблемы управления и информатики
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/208782
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Поиск циклов нелинейных периодических дискретных систем с помощью метода усредненного прогнозирующего управления / Д.В. Дмитришин, А.М. Стоколос, И.Э. Якоб // Проблемы управления и информатики. — 2020. — № 5. — С. 60-71. — Бібліогр.: 24 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Динаміка навіть найпростіших нелінійних стаціонарних дискретних систем є досить складною. Вона включає в себе як періодичні рухи, так і квазіперіодичні або рекурентні. У таких системах майже завжди присутні хаотичні атрактори, природа яких на сьогодні досить добре вивчена для широкого класу модель-них стаціонарних рівнянь. В нестаціонарних системах така динаміка стає ще більш складною. У багатьох випадках хаотичні атрактори можна моделювати за допомогою періодичних рухів з великими періодами, тобто будувати так званий скелет атрактора. Пошук самих атракторів, як і мінімальних інваріантних множин на них, є важливим завданням прикладної математики - рішення використовуються в фізичних, хімічних, економічних науках, в теорії кодування, передачі сигналів та ін. Один із підходів вирішення завдань пошуку і верифікації циклів засновано на застосуванні методів стабілізації цих циклів. Ці методи можна розділити на дві групи: запізнілий контроль, який використовує знання про попередні стани системи, і прогнозний контроль, при якому приймаються майбутні значення стану системи при відсутності керування. Основ-ним результатом роботи є представлення матриці Якобі циклу системи з керуванням через відповідну матрицю Якобі системи без керування. З цього представлення відразу отримуємо коефіцієнти посилення керування, якщо мультиплікатори циклу відомі. Якщо вони не відомі, то пропонується метод оцінки коефіцієнтів посилення через наближені значення показників Ляпунова. Запропоновано методи верифікації знайдених точок циклу у вигляді трьох необхідних умов циклічності точки: перевірка малості невʼязки, періодичності та локальної асимптотичної стійкості циклу. Роботу алгоритму продемонстровано на модельних прикладах.