Subgroups of the Group of Generalized Lorentz Transformations and Their Geometric Invariants

It is shown that the group of generalized Lorentz transformations serves as the relativistic symmetry group of a flat Finslerian event space. Being the generalization of Minkowski space, the Finslerian event space arises from the spontaneous breaking of initial gauge symmetry and from the formation...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автор: Bogoslovsky, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2005
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/209343
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Subgroups of the Group of Generalized Lorentz Transformations and Their Geometric Invariants / G. Bogoslovsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:It is shown that the group of generalized Lorentz transformations serves as the relativistic symmetry group of a flat Finslerian event space. Being the generalization of Minkowski space, the Finslerian event space arises from the spontaneous breaking of initial gauge symmetry and from the formation of an anisotropic fermion-antifermion condensate. The principle of generalized Lorentz invariance enables the exact taking into account of the influence of the condensate on the dynamics of fundamental fields. In particular, the corresponding generalized Dirac equation turns out to be nonlinear. We have found two noncompact subgroups of the group of generalized Lorentz symmetry and their geometric invariants. These subgroups play a key role in constructing exact solutions of such equations.