One of the Odd Zeta Values from ζ(5) to ζ(25) Is Irrational. By Elementary Means

Available proofs of the result of the type "at least one of the odd zeta values ζ(5), ζ(7),…, ζ(s) is irrational" make use of the saddle-point method or of linear independence criteria, or both. These two remarkable techniques are, however, counted as highly non-elementary, therefore leavi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Zudilin W.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209436
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:One of the Odd Zeta Values from ζ(5) to ζ(25) Is Irrational. By Elementary Means / W. Zudilin // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Available proofs of the result of the type "at least one of the odd zeta values ζ(5), ζ(7),…, ζ(s) is irrational" make use of the saddle-point method or of linear independence criteria, or both. These two remarkable techniques are, however, counted as highly non-elementary, therefore leaving the partial irrationality result inaccessible to the general mathematics audience in all its glory. Here we modify the original construction of linear forms in odd zeta values to produce, for the first time, an elementary proof of such a result — a proof whose technical ingredients are limited to the prime number theorem and Stirling's approximation formula for the factorial.