Asymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight
In this paper, we compute the asymptotic behavior of the recurrence coefficients for polynomials orthogonal with respect to a logarithmic weight w(x)dx = log(2k/(1 - x))dx on (-1,1), with k > 1, and verify a conjecture of A. Magnus for these coefficients. We use Riemann-Hilbert/steepest-descent m...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209516 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Asymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight / T.O. Conway, P. Deift // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 17 назв. — англ. |