Asymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight

In this paper, we compute the asymptotic behavior of the recurrence coefficients for polynomials orthogonal with respect to a logarithmic weight w(x)dx = log(2k/(1 - x))dx on (-1,1), with k > 1, and verify a conjecture of A. Magnus for these coefficients. We use Riemann-Hilbert/steepest-descent m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
Hauptverfasser: Conway, T.O., Deift, P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209516
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Asymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight / T.O. Conway, P. Deift // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine