A Spin Analogue of Kerov Polynomials

Kerov polynomials describe normalized irreducible characters of the symmetric groups in terms of the free cumulants associated with Young diagrams. We suggest well-suited counterparts of the Kerov polynomials in spin (or projective) representation settings. We show that spin analogues of irreducible...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2018
Main Author: Matsumoto, S.
Format: Article
Language:English
Published: Інститут математики НАН України 2018
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/209519
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A Spin Analogue of Kerov Polynomials / S. Matsumoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine