A Spin Analogue of Kerov Polynomials

Kerov polynomials describe normalized irreducible characters of the symmetric groups in terms of the free cumulants associated with Young diagrams. We suggest well-suited counterparts of the Kerov polynomials in spin (or projective) representation settings. We show that spin analogues of irreducible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2018
1. Verfasser: Matsumoto, S.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/209519
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Spin Analogue of Kerov Polynomials / S. Matsumoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-209519
record_format dspace
spelling Matsumoto, S.
2025-11-24T10:25:41Z
2018
A Spin Analogue of Kerov Polynomials / S. Matsumoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 22 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 05E10; 20C30; 05E05
arXiv: 1803.01121
https://nasplib.isofts.kiev.ua/handle/123456789/209519
https://doi.org/10.3842/SIGMA.2018.053
Kerov polynomials describe normalized irreducible characters of the symmetric groups in terms of the free cumulants associated with Young diagrams. We suggest well-suited counterparts of the Kerov polynomials in spin (or projective) representation settings. We show that spin analogues of irreducible characters are polynomials in even free cumulants associated with double diagrams of strict partitions. Moreover, we present a conjecture for the positivity of their coefficients.
The author acknowledges useful discussions with Valentin Féray and Dario De Stavola. The research was supported by JSPS KAKENHI Grant Number 17K05281.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Spin Analogue of Kerov Polynomials
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Spin Analogue of Kerov Polynomials
spellingShingle A Spin Analogue of Kerov Polynomials
Matsumoto, S.
title_short A Spin Analogue of Kerov Polynomials
title_full A Spin Analogue of Kerov Polynomials
title_fullStr A Spin Analogue of Kerov Polynomials
title_full_unstemmed A Spin Analogue of Kerov Polynomials
title_sort spin analogue of kerov polynomials
author Matsumoto, S.
author_facet Matsumoto, S.
publishDate 2018
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Kerov polynomials describe normalized irreducible characters of the symmetric groups in terms of the free cumulants associated with Young diagrams. We suggest well-suited counterparts of the Kerov polynomials in spin (or projective) representation settings. We show that spin analogues of irreducible characters are polynomials in even free cumulants associated with double diagrams of strict partitions. Moreover, we present a conjecture for the positivity of their coefficients.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/209519
citation_txt A Spin Analogue of Kerov Polynomials / S. Matsumoto // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT matsumotos aspinanalogueofkerovpolynomials
AT matsumotos spinanalogueofkerovpolynomials
first_indexed 2025-12-07T14:52:10Z
last_indexed 2025-12-07T14:52:10Z
_version_ 1850886081086488576