Characterizing Moonshine Functions by Vertex-Operator-Algebraic Conditions
Given a holomorphic C₂-cofinite vertex operator algebra V with graded dimension j−744, Borcherds's proof of the monstrous moonshine conjecture implies any finite order automorphism of V has graded trace given by a "completely replicable function", and by work of Cummins and Gannon, th...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2018 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2018
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/209843 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Characterizing Moonshine Functions by Vertex-Operator-Algebraic Conditions / S. Carnahan, T. Komuro, S. Urano // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 19 назв. — англ. |