Characterizing Moonshine Functions by Vertex-Operator-Algebraic Conditions
Given a holomorphic C₂-cofinite vertex operator algebra V with graded dimension j−744, Borcherds's proof of the monstrous moonshine conjecture implies any finite order automorphism of V has graded trace given by a "completely replicable function", and by work of Cummins and Gannon, th...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209843 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Characterizing Moonshine Functions by Vertex-Operator-Algebraic Conditions / S. Carnahan, T. Komuro, S. Urano // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-209843 |
|---|---|
| record_format |
dspace |
| spelling |
Carnahan, S. Komuro, T. Urano, S. 2025-11-27T14:49:19Z 2018 Characterizing Moonshine Functions by Vertex-Operator-Algebraic Conditions / S. Carnahan, T. Komuro, S. Urano // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 19 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 11F22; 17B69 arXiv: 1712.10160 https://nasplib.isofts.kiev.ua/handle/123456789/209843 https://doi.org/10.3842/SIGMA.2018.114 Given a holomorphic C₂-cofinite vertex operator algebra V with graded dimension j−744, Borcherds's proof of the monstrous moonshine conjecture implies any finite order automorphism of V has graded trace given by a "completely replicable function", and by work of Cummins and Gannon, these functions are principal moduli of genus zero modular groups. The action of the monster simple group on the monster vertex operator algebra produces 171 such functions, known as the monstrous moonshine functions. We show that 154 of the 157 non-monstrous completely replicable functions cannot possibly occur as trace functions on V. This research was funded by JSPS Kakenhi Grant-in-Aid for Young Scientists (B) 17K14152. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Characterizing Moonshine Functions by Vertex-Operator-Algebraic Conditions Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Characterizing Moonshine Functions by Vertex-Operator-Algebraic Conditions |
| spellingShingle |
Characterizing Moonshine Functions by Vertex-Operator-Algebraic Conditions Carnahan, S. Komuro, T. Urano, S. |
| title_short |
Characterizing Moonshine Functions by Vertex-Operator-Algebraic Conditions |
| title_full |
Characterizing Moonshine Functions by Vertex-Operator-Algebraic Conditions |
| title_fullStr |
Characterizing Moonshine Functions by Vertex-Operator-Algebraic Conditions |
| title_full_unstemmed |
Characterizing Moonshine Functions by Vertex-Operator-Algebraic Conditions |
| title_sort |
characterizing moonshine functions by vertex-operator-algebraic conditions |
| author |
Carnahan, S. Komuro, T. Urano, S. |
| author_facet |
Carnahan, S. Komuro, T. Urano, S. |
| publishDate |
2018 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
Given a holomorphic C₂-cofinite vertex operator algebra V with graded dimension j−744, Borcherds's proof of the monstrous moonshine conjecture implies any finite order automorphism of V has graded trace given by a "completely replicable function", and by work of Cummins and Gannon, these functions are principal moduli of genus zero modular groups. The action of the monster simple group on the monster vertex operator algebra produces 171 such functions, known as the monstrous moonshine functions. We show that 154 of the 157 non-monstrous completely replicable functions cannot possibly occur as trace functions on V.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/209843 |
| citation_txt |
Characterizing Moonshine Functions by Vertex-Operator-Algebraic Conditions / S. Carnahan, T. Komuro, S. Urano // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 19 назв. — англ. |
| work_keys_str_mv |
AT carnahans characterizingmoonshinefunctionsbyvertexoperatoralgebraicconditions AT komurot characterizingmoonshinefunctionsbyvertexoperatoralgebraicconditions AT uranos characterizingmoonshinefunctionsbyvertexoperatoralgebraicconditions |
| first_indexed |
2025-12-07T15:02:44Z |
| last_indexed |
2025-12-07T15:02:44Z |
| _version_ |
1850886110845075456 |