A Riemann-Hilbert Approach to the Heun Equation
We describe the close connection between the linear system for the sixth Painlevé equation and the general Heun equation, formulate the Riemann-Hilbert problem for the Heun functions, and show how, in the case of reducible monodromy, the Riemann-Hilbert formalism can be used to construct explicit po...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2018 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2018
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/209864 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | A Riemann-Hilbert Approach to the Heun Equation / B. Dubrovin, A. Kapaev // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 30 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | We describe the close connection between the linear system for the sixth Painlevé equation and the general Heun equation, formulate the Riemann-Hilbert problem for the Heun functions, and show how, in the case of reducible monodromy, the Riemann-Hilbert formalism can be used to construct explicit polynomial solutions of the Heun equation.
|
|---|---|
| ISSN: | 1815-0659 |