Structure Relations of Classical Orthogonal Polynomials in the Quadratic and q-Quadratic Variable

We prove an equivalence between the existence of the first structure relation satisfied by a sequence of monic orthogonal polynomials {Pₙ}ₙ₌₀ ∞, the orthogonality of the second derivatives {𝔻²ₓPₙ}ₙ₌₂ ∞ , and a generalized Sturm-Liouville type equation. Our treatment of the generalized Bochner theore...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2018
Main Authors: Kenfack Nangho, M., Jordaan, K.
Format: Article
Language:English
Published: Інститут математики НАН України 2018
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/209878
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Structure Relations of Classical Orthogonal Polynomials in the Quadratic and q-Quadratic Variable / M. Kenfack Nangho, K. Jordaan // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 28 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine