Structure Relations of Classical Orthogonal Polynomials in the Quadratic and q-Quadratic Variable
We prove an equivalence between the existence of the first structure relation satisfied by a sequence of monic orthogonal polynomials {Pₙ}ₙ₌₀ ∞, the orthogonality of the second derivatives {𝔻²ₓPₙ}ₙ₌₂ ∞ , and a generalized Sturm-Liouville type equation. Our treatment of the generalized Bochner theore...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2018 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2018
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/209878 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Structure Relations of Classical Orthogonal Polynomials in the Quadratic and q-Quadratic Variable / M. Kenfack Nangho, K. Jordaan // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineБудьте першим, хто залишить коментар!