Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators
We study the correlation functions of the Pfaffian Schur process. Borodin and Rains [J. Stat. Phys. 121 (2005), 291-317] introduced the Pfaffian Schur process and derived its correlation functions using a Pfaffian analogue of the Eynard-Mehta theorem. We present here an alternative derivation of the...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2019 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2019
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/210296 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators / P. Ghosal // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 41 назв. — англ. |