Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators
We study the correlation functions of the Pfaffian Schur process. Borodin and Rains [J. Stat. Phys. 121 (2005), 291-317] introduced the Pfaffian Schur process and derived its correlation functions using a Pfaffian analogue of the Eynard-Mehta theorem. We present here an alternative derivation of the...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2019 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2019
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/210296 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators / P. Ghosal // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 41 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-210296 |
|---|---|
| record_format |
dspace |
| spelling |
Ghosal, P. 2025-12-05T09:23:47Z 2019 Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators / P. Ghosal // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 41 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 60C05; O5E05 arXiv: 1705.05859 https://nasplib.isofts.kiev.ua/handle/123456789/210296 https://doi.org/10.3842/SIGMA.2019.092 We study the correlation functions of the Pfaffian Schur process. Borodin and Rains [J. Stat. Phys. 121 (2005), 291-317] introduced the Pfaffian Schur process and derived its correlation functions using a Pfaffian analogue of the Eynard-Mehta theorem. We present here an alternative derivation of the correlation functions using Macdonald difference operators. The author is grateful to his adviser, Professor Ivan Corwin, for suggesting the problem considered in this paper. We also thankfully acknowledge his numerous critical comments on the earlier versions of this paper. We are thankful to Guillaume Barraquand for his various remarks on the proofs and especially, suggesting a substitution in Theorem 5.2. We thank the anonymous referees whose comments have greatly improved this manuscript. We also like to thank Professor Alexei Borodin for pointing out some mistakes in the citations, which have been corrected. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators |
| spellingShingle |
Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators Ghosal, P. |
| title_short |
Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators |
| title_full |
Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators |
| title_fullStr |
Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators |
| title_full_unstemmed |
Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators |
| title_sort |
correlation functions of the pfaffian schur process using macdonald difference operators |
| author |
Ghosal, P. |
| author_facet |
Ghosal, P. |
| publishDate |
2019 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We study the correlation functions of the Pfaffian Schur process. Borodin and Rains [J. Stat. Phys. 121 (2005), 291-317] introduced the Pfaffian Schur process and derived its correlation functions using a Pfaffian analogue of the Eynard-Mehta theorem. We present here an alternative derivation of the correlation functions using Macdonald difference operators.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/210296 |
| citation_txt |
Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators / P. Ghosal // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 41 назв. — англ. |
| work_keys_str_mv |
AT ghosalp correlationfunctionsofthepfaffianschurprocessusingmacdonalddifferenceoperators |
| first_indexed |
2025-12-07T21:25:03Z |
| last_indexed |
2025-12-07T21:25:03Z |
| _version_ |
1850886275566927872 |