Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators

We study the correlation functions of the Pfaffian Schur process. Borodin and Rains [J. Stat. Phys. 121 (2005), 291-317] introduced the Pfaffian Schur process and derived its correlation functions using a Pfaffian analogue of the Eynard-Mehta theorem. We present here an alternative derivation of the...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2019
Автор: Ghosal, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210296
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators / P. Ghosal // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 41 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210296
record_format dspace
spelling Ghosal, P.
2025-12-05T09:23:47Z
2019
Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators / P. Ghosal // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 41 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 60C05; O5E05
arXiv: 1705.05859
https://nasplib.isofts.kiev.ua/handle/123456789/210296
https://doi.org/10.3842/SIGMA.2019.092
We study the correlation functions of the Pfaffian Schur process. Borodin and Rains [J. Stat. Phys. 121 (2005), 291-317] introduced the Pfaffian Schur process and derived its correlation functions using a Pfaffian analogue of the Eynard-Mehta theorem. We present here an alternative derivation of the correlation functions using Macdonald difference operators.
The author is grateful to his adviser, Professor Ivan Corwin, for suggesting the problem considered in this paper. We also thankfully acknowledge his numerous critical comments on the earlier versions of this paper. We are thankful to Guillaume Barraquand for his various remarks on the proofs and especially, suggesting a substitution in Theorem 5.2. We thank the anonymous referees whose comments have greatly improved this manuscript. We also like to thank Professor Alexei Borodin for pointing out some mistakes in the citations, which have been corrected.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators
spellingShingle Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators
Ghosal, P.
title_short Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators
title_full Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators
title_fullStr Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators
title_full_unstemmed Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators
title_sort correlation functions of the pfaffian schur process using macdonald difference operators
author Ghosal, P.
author_facet Ghosal, P.
publishDate 2019
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study the correlation functions of the Pfaffian Schur process. Borodin and Rains [J. Stat. Phys. 121 (2005), 291-317] introduced the Pfaffian Schur process and derived its correlation functions using a Pfaffian analogue of the Eynard-Mehta theorem. We present here an alternative derivation of the correlation functions using Macdonald difference operators.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210296
citation_txt Correlation Functions of the Pfaffian Schur Process Using Macdonald Difference Operators / P. Ghosal // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 41 назв. — англ.
work_keys_str_mv AT ghosalp correlationfunctionsofthepfaffianschurprocessusingmacdonalddifferenceoperators
first_indexed 2025-12-07T21:25:03Z
last_indexed 2025-12-07T21:25:03Z
_version_ 1850886275566927872