A Note on the Derivatives of Isotropic Positive Definite Functions on the Hilbert Sphere
In this note, we give a recursive formula for the derivatives of isotropic positive definite functions on the Hilbert sphere. We then use it to prove a conjecture stated by Trübner and Ziegel, which says that for a positive definite function on the Hilbert sphere to be in C²ˡ([0,π]), it is necessary...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2019 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2019
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/210307 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | A Note on the Derivatives of Isotropic Positive Definite Functions on the Hilbert Sphere / J. Jäger // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 23 назв. — англ. |