Short Star-Products for Filtered Quantizations, I
We develop a theory of short star-products for filtered quantizations of graded Poisson algebras, introduced in 2016 by Beem, Peelaers, and Rastelli for algebras of regular functions on hyperKähler cones in the context of 3-dimensional N = 4 superconformal field theories [Beem C., Peelaers W., Raste...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2020 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2020
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/210596 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Short Star-Products for Filtered Quantizations, I. Pavel Etingof and Douglas Stryker. SIGMA 16 (2020), 014, 28 pages |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We develop a theory of short star-products for filtered quantizations of graded Poisson algebras, introduced in 2016 by Beem, Peelaers, and Rastelli for algebras of regular functions on hyperKähler cones in the context of 3-dimensional N = 4 superconformal field theories [Beem C., Peelaers W., Rastelli L., Comm. Math. Phys. 354 (2017), 345-392]. This appears to be a new structure in representation theory, which is an algebraic incarnation of the non-holomorphic SU(2)-symmetry of such cones. Using the technique of twisted traces on quantizations (an idea due to Kontsevich), we prove the conjecture by Beem, Peelaers, and Rastelli that short star-products depend on finitely many parameters (under a natural nondegeneracy condition), and also construct these star products in a number of examples, confirming another conjecture by Beem, Peelaers, and Rastelli.
|
|---|---|
| ISSN: | 1815-0659 |