Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz
Generalizing the main result of [Aparicio-Monforte A., Compoint E., Weil J.-A., J. Pure Appl. Algebra 217 (2013), 1504-1516], we prove that a linear differential system is in reduced form in the sense of Kolchin and Kovacic if and only if any differential module in an algebraic construction admits a...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2020 |
| Hauptverfasser: | , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2020
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/210696 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz. Moulay Barkatou, Thomas Cluzeau, Lucia Di Vizio and Jacques-Arthur Weil. SIGMA 16 (2020), 054, 13 pages |