Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz

Generalizing the main result of [Aparicio-Monforte A., Compoint E., Weil J.-A., J. Pure Appl. Algebra 217 (2013), 1504-1516], we prove that a linear differential system is in reduced form in the sense of Kolchin and Kovacic if and only if any differential module in an algebraic construction admits a...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2020
Автори: Barkatou, Moulay, Cluzeau, Thomas, Di Vizio, Lucia, Weil, Jacques-Arthur
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2020
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/210696
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz. Moulay Barkatou, Thomas Cluzeau, Lucia Di Vizio and Jacques-Arthur Weil. SIGMA 16 (2020), 054, 13 pages

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-210696
record_format dspace
spelling Barkatou, Moulay
Cluzeau, Thomas
Di Vizio, Lucia
Weil, Jacques-Arthur
2025-12-15T15:22:51Z
2020
Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz. Moulay Barkatou, Thomas Cluzeau, Lucia Di Vizio and Jacques-Arthur Weil. SIGMA 16 (2020), 054, 13 pages
1815-0659
2020 Mathematics Subject Classification: 34M03; 34M15; 34C20
arXiv:1912.10567
https://nasplib.isofts.kiev.ua/handle/123456789/210696
https://doi.org/10.3842/SIGMA.2020.054
Generalizing the main result of [Aparicio-Monforte A., Compoint E., Weil J.-A., J. Pure Appl. Algebra 217 (2013), 1504-1516], we prove that a linear differential system is in reduced form in the sense of Kolchin and Kovacic if and only if any differential module in an algebraic construction admits a constant basis. Then we derive an explicit version of this statement. We finally deduce some properties of the Lie algebra of Katz's intrinsic Galois group.
We are grateful to the anonymous referees for their relevant suggestions, which helped us to improve the clarity and quality of this work.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz
spellingShingle Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz
Barkatou, Moulay
Cluzeau, Thomas
Di Vizio, Lucia
Weil, Jacques-Arthur
title_short Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz
title_full Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz
title_fullStr Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz
title_full_unstemmed Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz
title_sort reduced forms of linear differential systems and the intrinsic galois-lie algebra of katz
author Barkatou, Moulay
Cluzeau, Thomas
Di Vizio, Lucia
Weil, Jacques-Arthur
author_facet Barkatou, Moulay
Cluzeau, Thomas
Di Vizio, Lucia
Weil, Jacques-Arthur
publishDate 2020
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Generalizing the main result of [Aparicio-Monforte A., Compoint E., Weil J.-A., J. Pure Appl. Algebra 217 (2013), 1504-1516], we prove that a linear differential system is in reduced form in the sense of Kolchin and Kovacic if and only if any differential module in an algebraic construction admits a constant basis. Then we derive an explicit version of this statement. We finally deduce some properties of the Lie algebra of Katz's intrinsic Galois group.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/210696
citation_txt Reduced Forms of Linear Differential Systems and the Intrinsic Galois-Lie Algebra of Katz. Moulay Barkatou, Thomas Cluzeau, Lucia Di Vizio and Jacques-Arthur Weil. SIGMA 16 (2020), 054, 13 pages
work_keys_str_mv AT barkatoumoulay reducedformsoflineardifferentialsystemsandtheintrinsicgaloisliealgebraofkatz
AT cluzeauthomas reducedformsoflineardifferentialsystemsandtheintrinsicgaloisliealgebraofkatz
AT diviziolucia reducedformsoflineardifferentialsystemsandtheintrinsicgaloisliealgebraofkatz
AT weiljacquesarthur reducedformsoflineardifferentialsystemsandtheintrinsicgaloisliealgebraofkatz
first_indexed 2025-12-17T12:04:31Z
last_indexed 2025-12-17T12:04:31Z
_version_ 1851756979366658048