PRV property and the asymptotic behaviour of solutions of stochastic differential equations

We consider the a.s. asymptotic behaviour of a solution of the stochastic differential equation (SDE) dX(t) = g(X(t))dt + σ(X(t))dW(t), with X(0) ≡ b > 0, where g(.) and σ(.) are positive continuous functions and W(.) is the standard Wiener process. By applying the theory of PRV and PMPV funct...

Full description

Saved in:
Bibliographic Details
Date:2005
Main Authors: Buldygin, V.V., Klesov, O.I., Steinebach, J.G.
Format: Article
Language:English
Published: Інститут математики НАН України 2005
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/4424
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:PRV property and the asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach // Theory of Stochastic Processes. — 2005. — Т. 11 (27), № 3-4. — С. 42–57. — Бібліогр.: 17 назв.— англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-4424
record_format dspace
spelling Buldygin, V.V.
Klesov, O.I.
Steinebach, J.G.
2009-11-09T15:30:54Z
2009-11-09T15:30:54Z
2005
PRV property and the asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach // Theory of Stochastic Processes. — 2005. — Т. 11 (27), № 3-4. — С. 42–57. — Бібліогр.: 17 назв.— англ.
0321-3900
https://nasplib.isofts.kiev.ua/handle/123456789/4424
519.21
We consider the a.s. asymptotic behaviour of a solution of the stochastic differential equation (SDE) dX(t) = g(X(t))dt + σ(X(t))dW(t), with X(0) ≡ b > 0, where g(.) and σ(.) are positive continuous functions and W(.) is the standard Wiener process. By applying the theory of PRV and PMPV functions, we find the conditions on g(.) and σ(.), under which X(.) resp. f(X(.)) may be approximated a.s. on {X(t)→∞} by μ(.) resp. f(μ(.)), where μ( ) is a solution of the deterministic differential equation dμ(t) = g(μ(t))dt with μ(0) = b, and f(.) is a strictly increasing function. Moreover, we consider the asymptotic behaviour of generalized renewal processes connected with this SDE.
This work has partially been supported by Deutsche Forschungsgemeinschaft under DFG grants 436 UKR 113/41/0-3 and 436 UKR 113/68/0-1.
en
Інститут математики НАН України
PRV property and the asymptotic behaviour of solutions of stochastic differential equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title PRV property and the asymptotic behaviour of solutions of stochastic differential equations
spellingShingle PRV property and the asymptotic behaviour of solutions of stochastic differential equations
Buldygin, V.V.
Klesov, O.I.
Steinebach, J.G.
title_short PRV property and the asymptotic behaviour of solutions of stochastic differential equations
title_full PRV property and the asymptotic behaviour of solutions of stochastic differential equations
title_fullStr PRV property and the asymptotic behaviour of solutions of stochastic differential equations
title_full_unstemmed PRV property and the asymptotic behaviour of solutions of stochastic differential equations
title_sort prv property and the asymptotic behaviour of solutions of stochastic differential equations
author Buldygin, V.V.
Klesov, O.I.
Steinebach, J.G.
author_facet Buldygin, V.V.
Klesov, O.I.
Steinebach, J.G.
publishDate 2005
language English
publisher Інститут математики НАН України
format Article
description We consider the a.s. asymptotic behaviour of a solution of the stochastic differential equation (SDE) dX(t) = g(X(t))dt + σ(X(t))dW(t), with X(0) ≡ b > 0, where g(.) and σ(.) are positive continuous functions and W(.) is the standard Wiener process. By applying the theory of PRV and PMPV functions, we find the conditions on g(.) and σ(.), under which X(.) resp. f(X(.)) may be approximated a.s. on {X(t)→∞} by μ(.) resp. f(μ(.)), where μ( ) is a solution of the deterministic differential equation dμ(t) = g(μ(t))dt with μ(0) = b, and f(.) is a strictly increasing function. Moreover, we consider the asymptotic behaviour of generalized renewal processes connected with this SDE.
issn 0321-3900
url https://nasplib.isofts.kiev.ua/handle/123456789/4424
citation_txt PRV property and the asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach // Theory of Stochastic Processes. — 2005. — Т. 11 (27), № 3-4. — С. 42–57. — Бібліогр.: 17 назв.— англ.
work_keys_str_mv AT buldyginvv prvpropertyandtheasymptoticbehaviourofsolutionsofstochasticdifferentialequations
AT klesovoi prvpropertyandtheasymptoticbehaviourofsolutionsofstochasticdifferentialequations
AT steinebachjg prvpropertyandtheasymptoticbehaviourofsolutionsofstochasticdifferentialequations
first_indexed 2025-12-07T18:31:32Z
last_indexed 2025-12-07T18:31:32Z
_version_ 1850875358923980800