Prediction problem for random fields on groups
The problem considered is the problem of optimal linear estimation of the functional Aξ = ∑↑∞↓j=0 ∫↓G a(g, j)ξ(g, j)dg which depends on the unknown values of a homogeneous random field ξ(g, j) on the group G × Z from observations of the field ξ(g, j) + η(g, j) for (g, j) belongs G×{−1,−2, . . .}, wher...
Saved in:
| Date: | 2007 |
|---|---|
| Main Author: | Moklyachuk, M. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2007
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/4518 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Prediction problem for random fields on groups / M. Moklyachuk // Theory of Stochastic Processes. — 2007. — Т. 13 (29), № 4. — С. 148–162. — Бібліогр.: 20 назв.— англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Interpolation Problems for Random Fields from Observations in Perforated Plane
by: M. P. Moklyachuk, et al.
Published: (2016) -
Minimax prediction problem for multidimentional stochastic sequences
by: Moklyachuk, M., et al.
Published: (2008) -
Random walks on discrete Abelian groups
by: M. V. Myroniuk
Published: (2015) -
Interpolation Problems for Random Fields from Observations in Perforated Plane
by: Моклячук, Михайло Павлович, et al.
Published: (2016) -
Distribution of the maximum of the Chentsov random field
by: Kruglova, N.
Published: (2008)