On the φ-asymptotic behaviour of solutions of stochastic differential equations

In this paper we study the a.s. asymptotic behaviour of the solution of the stochastic dfferential equation dX(t) = g(X(t))dt +σ(X(t))dW(t), X(0) = b > 0, where g and σ are positive continuous functions and W is a Wiener process. Making use of the theory of pseudo-regularly varying (PRV) function...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Buldygin, V.V., Klesov, O.I., Steinebach, J.G., Tymoshenko, O.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/4532
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the φ-asymptotic behaviour of solutions of stochastic differential equations / V.V. Buldygin, O.I. Klesov, J.G. Steinebach, O.A. Tymoshenko // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 1. — С. 11–29. — Бібліогр.: 28 назв.— англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In this paper we study the a.s. asymptotic behaviour of the solution of the stochastic dfferential equation dX(t) = g(X(t))dt +σ(X(t))dW(t), X(0) = b > 0, where g and σ are positive continuous functions and W is a Wiener process. Making use of the theory of pseudo-regularly varying (PRV) functions, we find conditions on g, σ and φ, under which φ(X(•)) can be approximated a.s. by φ(μ(•), where μ is the solution of the ordinary differential equation dμ(t) = g(μ(t))dt, μ(0) = b. As an application of these results we discuss the problem of φ-asymptotic equivalence for solutions of stochastic differential equations.
ISSN:0321-3900