Диффузия вихря в слое устойчиво стратифицированной жидкости

Статья содержит аналитическое pешение задачи турбулентной диффузии квазигоризонтального изолированного осесимметpичного вихpя. Квазигоризонтальность обуславливает малость вертикальной компоненты скорости, а медленное изменение во времени - малость радиальной компоненты. Случаи, где это предположение...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2006
1. Verfasser: Лукьянов, П.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут гідромеханіки НАН України 2006
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/4763
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Диффузия вихря в слое устойчиво стратифицированной жидкости / П.В. Лукьянов // Прикладна гідромеханіка. — 2006. — Т. 8, № 3. — С. 63-77. — Бібліогр.: 24 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Статья содержит аналитическое pешение задачи турбулентной диффузии квазигоризонтального изолированного осесимметpичного вихpя. Квазигоризонтальность обуславливает малость вертикальной компоненты скорости, а медленное изменение во времени - малость радиальной компоненты. Случаи, где это предположение нарушается, оговариваются в разделе о вторичных течениях. На основании сделанных допущений задача сводится к одному линейному уравнению диффузии для вертикальной компоненты завихренности с различными вертикальной и горизонтальной диффузией. Вертикальная диффузия полагается приближенно постоянной [1], что типично только для устойчивой стратифицикации. Горизонтальная диффузия вычисляется по закону"четырех третей" Ричардсона, приближенно выполняющемуся для горизонтальных масштабов вихрей в диапазоне 10-1000 м [2, 3]. Гpаничные условия задачи стандартные. Граничные условия на свободной поверхности можно формулировать на поверхности невозмущенного слоя жидкости, так как показано, что величина искривления свободной поверхности мала по сравнению с глубиной слоя. Для моделирования начального распределения завихренности, по вертикальной координате используется специальное распределение, которое позволяет строго удовлетворить граничные условия и задавать в начальный момент вихрь различной толщины и расположения. По радиальной координате используется распределение в виде изолированного гауссиана [4-6]. Полное решение линейной задачи позволяет выделить процесс горизонтальной диффузии, для которого найдено автомодельное решение. Оно, для данного радиального распределения, соответствует условию сохранения третьего момента завихренности. Показано, что линейная модель справедлива, если число Фруда значительно меньше 1.