On random attractor of semilinear stochastically perturbed wave equation without uniqueness

In this paper we investigate the dynamics of solutions of the semilinear wave equation, perturbed by additive white noise, in sense of the random attractor theory. The conditions on the parameters of the problem do not guarantee uniqueness of solution of the corresponding Cauchy problem. We prove th...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Системні дослідження та інформаційні технології
Дата:2013
Автори: Iovane, G., Kapustyan, O.V., Paliichuk, L.S., Pereguda, O.V.
Формат: Стаття
Мова:English
Опубліковано: Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України 2013
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/50020
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On random attractor of semilinear stochastically perturbed wave equation without uniqueness / G. Iovane, O.V. Kapustyan, L.S. Paliichuk, O.V. Pereguda // Систем. дослідж. та інформ. технології. — 2013. — № 1. — С. 87-96. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-50020
record_format dspace
spelling Iovane, G.
Kapustyan, O.V.
Paliichuk, L.S.
Pereguda, O.V.
2013-10-02T20:15:48Z
2013-10-02T20:15:48Z
2013
On random attractor of semilinear stochastically perturbed wave equation without uniqueness / G. Iovane, O.V. Kapustyan, L.S. Paliichuk, O.V. Pereguda // Систем. дослідж. та інформ. технології. — 2013. — № 1. — С. 87-96. — Бібліогр.: 18 назв. — англ.
1681–6048
https://nasplib.isofts.kiev.ua/handle/123456789/50020
517.9
In this paper we investigate the dynamics of solutions of the semilinear wave equation, perturbed by additive white noise, in sense of the random attractor theory. The conditions on the parameters of the problem do not guarantee uniqueness of solution of the corresponding Cauchy problem. We prove theorem on the existence of random attractor for abstract noncompact multi-valued random dynamical system, which is applied to the wave equation with non-smooth nonlinear term. A priory estimate for weak solution of randomly perturbed problem is deduced, which allows to obtain the existence at least one weak solution. The multi-valued stochastic flow is generated by the weak solutions of investigated problem. We prove the existence of random attractor for generated multi-valued stochastic flow.
Досліджено динаміку розв’язків напівлінійного хвильового рівняння, збуреного адитивним білим шумом, із точки зору теорії випадкових атракторів. Умови на параметри задачі не гарантують єдності розв’язку відповідної задачі Коші. Доведено теорему про існування випадкового атрактора для абстрактної некомпактної багатозначної випадкової динамічної системи, що була застосована до хвильового рівняння з негладким нелінійним доданком. Встановлено апріорну оцінку для слабкого розв’язку випадково збуреної задачі, що дозволило отримати існування принаймні одного слабкого розв’язку. На слабких розв’язках досліджуваної задачі побудовано багатозначний стохастичний потік. Доведено існування випадкового атрактора для побудованого багатозначного стохастичного потоку.
Исследована динамика решений полулинейного волнового уравнения, возмущенного аддитивным белым шумом, с точки зрения теории случайных аттракторов. Условия на параметры задачи не гарантируют единственности решения соответствующей задачи Коши. Доказано теорему о существовании случайного аттрактора для абстрактной некомпактной многозначной случайной динамической системы, которая была применена к волновому уравнению с негладким нелинейным слагаемым. Установлена априорная оценка для слабого решения случайно возмущенной задачи, которая позволила получить существование, по крайней мере, одного слабого решения. На слабых решениях исследованной задачи построен многозначный стохастический поток. Доказано существование случайного аттрактора для построенного многозначного стохастического потока.
en
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
Системні дослідження та інформаційні технології
Нові методи в системному аналізі, інформатиці та теорії прийняття рішень
On random attractor of semilinear stochastically perturbed wave equation without uniqueness
Випадковий атрактор напівлінійного стохастичного збуреного хвильового рівняння без одиничності розв’язку
Случайный аттрактор полулинейного стохастического возмущенного волнового уравнения без единственности решения
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On random attractor of semilinear stochastically perturbed wave equation without uniqueness
spellingShingle On random attractor of semilinear stochastically perturbed wave equation without uniqueness
Iovane, G.
Kapustyan, O.V.
Paliichuk, L.S.
Pereguda, O.V.
Нові методи в системному аналізі, інформатиці та теорії прийняття рішень
title_short On random attractor of semilinear stochastically perturbed wave equation without uniqueness
title_full On random attractor of semilinear stochastically perturbed wave equation without uniqueness
title_fullStr On random attractor of semilinear stochastically perturbed wave equation without uniqueness
title_full_unstemmed On random attractor of semilinear stochastically perturbed wave equation without uniqueness
title_sort on random attractor of semilinear stochastically perturbed wave equation without uniqueness
author Iovane, G.
Kapustyan, O.V.
Paliichuk, L.S.
Pereguda, O.V.
author_facet Iovane, G.
Kapustyan, O.V.
Paliichuk, L.S.
Pereguda, O.V.
topic Нові методи в системному аналізі, інформатиці та теорії прийняття рішень
topic_facet Нові методи в системному аналізі, інформатиці та теорії прийняття рішень
publishDate 2013
language English
container_title Системні дослідження та інформаційні технології
publisher Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
format Article
title_alt Випадковий атрактор напівлінійного стохастичного збуреного хвильового рівняння без одиничності розв’язку
Случайный аттрактор полулинейного стохастического возмущенного волнового уравнения без единственности решения
description In this paper we investigate the dynamics of solutions of the semilinear wave equation, perturbed by additive white noise, in sense of the random attractor theory. The conditions on the parameters of the problem do not guarantee uniqueness of solution of the corresponding Cauchy problem. We prove theorem on the existence of random attractor for abstract noncompact multi-valued random dynamical system, which is applied to the wave equation with non-smooth nonlinear term. A priory estimate for weak solution of randomly perturbed problem is deduced, which allows to obtain the existence at least one weak solution. The multi-valued stochastic flow is generated by the weak solutions of investigated problem. We prove the existence of random attractor for generated multi-valued stochastic flow. Досліджено динаміку розв’язків напівлінійного хвильового рівняння, збуреного адитивним білим шумом, із точки зору теорії випадкових атракторів. Умови на параметри задачі не гарантують єдності розв’язку відповідної задачі Коші. Доведено теорему про існування випадкового атрактора для абстрактної некомпактної багатозначної випадкової динамічної системи, що була застосована до хвильового рівняння з негладким нелінійним доданком. Встановлено апріорну оцінку для слабкого розв’язку випадково збуреної задачі, що дозволило отримати існування принаймні одного слабкого розв’язку. На слабких розв’язках досліджуваної задачі побудовано багатозначний стохастичний потік. Доведено існування випадкового атрактора для побудованого багатозначного стохастичного потоку. Исследована динамика решений полулинейного волнового уравнения, возмущенного аддитивным белым шумом, с точки зрения теории случайных аттракторов. Условия на параметры задачи не гарантируют единственности решения соответствующей задачи Коши. Доказано теорему о существовании случайного аттрактора для абстрактной некомпактной многозначной случайной динамической системы, которая была применена к волновому уравнению с негладким нелинейным слагаемым. Установлена априорная оценка для слабого решения случайно возмущенной задачи, которая позволила получить существование, по крайней мере, одного слабого решения. На слабых решениях исследованной задачи построен многозначный стохастический поток. Доказано существование случайного аттрактора для построенного многозначного стохастического потока.
issn 1681–6048
url https://nasplib.isofts.kiev.ua/handle/123456789/50020
citation_txt On random attractor of semilinear stochastically perturbed wave equation without uniqueness / G. Iovane, O.V. Kapustyan, L.S. Paliichuk, O.V. Pereguda // Систем. дослідж. та інформ. технології. — 2013. — № 1. — С. 87-96. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT iovaneg onrandomattractorofsemilinearstochasticallyperturbedwaveequationwithoutuniqueness
AT kapustyanov onrandomattractorofsemilinearstochasticallyperturbedwaveequationwithoutuniqueness
AT paliichukls onrandomattractorofsemilinearstochasticallyperturbedwaveequationwithoutuniqueness
AT peregudaov onrandomattractorofsemilinearstochasticallyperturbedwaveequationwithoutuniqueness
AT iovaneg vipadkoviiatraktornapívlíníinogostohastičnogozburenogohvilʹovogorívnânnâbezodiničnostírozvâzku
AT kapustyanov vipadkoviiatraktornapívlíníinogostohastičnogozburenogohvilʹovogorívnânnâbezodiničnostírozvâzku
AT paliichukls vipadkoviiatraktornapívlíníinogostohastičnogozburenogohvilʹovogorívnânnâbezodiničnostírozvâzku
AT peregudaov vipadkoviiatraktornapívlíníinogostohastičnogozburenogohvilʹovogorívnânnâbezodiničnostírozvâzku
AT iovaneg slučainyiattraktorpolulineinogostohastičeskogovozmuŝennogovolnovogouravneniâbezedinstvennostirešeniâ
AT kapustyanov slučainyiattraktorpolulineinogostohastičeskogovozmuŝennogovolnovogouravneniâbezedinstvennostirešeniâ
AT paliichukls slučainyiattraktorpolulineinogostohastičeskogovozmuŝennogovolnovogouravneniâbezedinstvennostirešeniâ
AT peregudaov slučainyiattraktorpolulineinogostohastičeskogovozmuŝennogovolnovogouravneniâbezedinstvennostirešeniâ
first_indexed 2025-12-07T19:46:13Z
last_indexed 2025-12-07T19:46:13Z
_version_ 1850880057217646592