Algorithm flars and recognition of time series anomalies

As a rule, algorithms of recognition of time series anomalies are based on time frequency or statistical analysis . This article is devoted to detailed formal description of new fuzzy set based algorithm FLARS (Fuzzy Logic Algorithm for Recognition of Signals). It recognizes time series anomalies by...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Системні дослідження та інформаційні технології
Дата:2004
Автори: Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., Tikhotski, S.A., Hinderer, J., Bonnin, J., Diament, M.
Формат: Стаття
Мова:English
Опубліковано: Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України 2004
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/50346
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Algorithm flars and recognition of time series anomalies / A.D. Gvishiani, S.M. Agayan, Sh.R. Bogoutdinov, S.A. Tikhotski, J. Hinderer, J. Bonnin, M. Diament // Систем. дослідж. та інформ. технології. — 2004. — № 3. — С. 7-16. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-50346
record_format dspace
spelling Gvishiani, A.D.
Agayan, S.M.
Bogoutdinov, Sh.R.
Tikhotski, S.A.
Hinderer, J.
Bonnin, J.
Diament, M.
2013-10-10T23:14:31Z
2013-10-10T23:14:31Z
2004
Algorithm flars and recognition of time series anomalies / A.D. Gvishiani, S.M. Agayan, Sh.R. Bogoutdinov, S.A. Tikhotski, J. Hinderer, J. Bonnin, M. Diament // Систем. дослідж. та інформ. технології. — 2004. — № 3. — С. 7-16. — Бібліогр.: 13 назв. — англ.
1681–6048
https://nasplib.isofts.kiev.ua/handle/123456789/50346
519.68
As a rule, algorithms of recognition of time series anomalies are based on time frequency or statistical analysis . This article is devoted to detailed formal description of new fuzzy set based algorithm FLARS (Fuzzy Logic Algorithm for Recognition of Signals). It recognizes time series anomalies by means «smooth» modelling (in fuzzy mathematics sense) of interpreter’s logic, which searches for anomalies at the record.
Загальноприйняті алгоритми виділення аномалій часових рядів базуються, як правило, на частотно часовому або статистичному аналізі. Стаття присвячена строгій побудові нового алгоритму FLARS. Його можна розглядати як результат «м’якого» (на основі нечіткої математики) моделювання логіки інтерпретатора, який шукає аномалії на запису.
Общепринятые алгоритмы выделения аномалий временных рядов основываются, в основном, на частотно временном или статистическом анализе. Статья посвящена строгому построению нового алгоритма FLARS. Его можно рассматривать как результат «мягкого» (на основе нечеткой математики) моделирования логики интерпретатора, ищущего аномалии на записи.
en
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
Системні дослідження та інформаційні технології
Теоретичні та прикладні проблеми і методи системного аналізу
Algorithm flars and recognition of time series anomalies
Алгоритми FLARS та виділення аномалій часових рядів
Алгоритмы FLARS и выделение аномалий временних рядов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Algorithm flars and recognition of time series anomalies
spellingShingle Algorithm flars and recognition of time series anomalies
Gvishiani, A.D.
Agayan, S.M.
Bogoutdinov, Sh.R.
Tikhotski, S.A.
Hinderer, J.
Bonnin, J.
Diament, M.
Теоретичні та прикладні проблеми і методи системного аналізу
title_short Algorithm flars and recognition of time series anomalies
title_full Algorithm flars and recognition of time series anomalies
title_fullStr Algorithm flars and recognition of time series anomalies
title_full_unstemmed Algorithm flars and recognition of time series anomalies
title_sort algorithm flars and recognition of time series anomalies
author Gvishiani, A.D.
Agayan, S.M.
Bogoutdinov, Sh.R.
Tikhotski, S.A.
Hinderer, J.
Bonnin, J.
Diament, M.
author_facet Gvishiani, A.D.
Agayan, S.M.
Bogoutdinov, Sh.R.
Tikhotski, S.A.
Hinderer, J.
Bonnin, J.
Diament, M.
topic Теоретичні та прикладні проблеми і методи системного аналізу
topic_facet Теоретичні та прикладні проблеми і методи системного аналізу
publishDate 2004
language English
container_title Системні дослідження та інформаційні технології
publisher Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
format Article
title_alt Алгоритми FLARS та виділення аномалій часових рядів
Алгоритмы FLARS и выделение аномалий временних рядов
description As a rule, algorithms of recognition of time series anomalies are based on time frequency or statistical analysis . This article is devoted to detailed formal description of new fuzzy set based algorithm FLARS (Fuzzy Logic Algorithm for Recognition of Signals). It recognizes time series anomalies by means «smooth» modelling (in fuzzy mathematics sense) of interpreter’s logic, which searches for anomalies at the record. Загальноприйняті алгоритми виділення аномалій часових рядів базуються, як правило, на частотно часовому або статистичному аналізі. Стаття присвячена строгій побудові нового алгоритму FLARS. Його можна розглядати як результат «м’якого» (на основі нечіткої математики) моделювання логіки інтерпретатора, який шукає аномалії на запису. Общепринятые алгоритмы выделения аномалий временных рядов основываются, в основном, на частотно временном или статистическом анализе. Статья посвящена строгому построению нового алгоритма FLARS. Его можно рассматривать как результат «мягкого» (на основе нечеткой математики) моделирования логики интерпретатора, ищущего аномалии на записи.
issn 1681–6048
url https://nasplib.isofts.kiev.ua/handle/123456789/50346
citation_txt Algorithm flars and recognition of time series anomalies / A.D. Gvishiani, S.M. Agayan, Sh.R. Bogoutdinov, S.A. Tikhotski, J. Hinderer, J. Bonnin, M. Diament // Систем. дослідж. та інформ. технології. — 2004. — № 3. — С. 7-16. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT gvishianiad algorithmflarsandrecognitionoftimeseriesanomalies
AT agayansm algorithmflarsandrecognitionoftimeseriesanomalies
AT bogoutdinovshr algorithmflarsandrecognitionoftimeseriesanomalies
AT tikhotskisa algorithmflarsandrecognitionoftimeseriesanomalies
AT hindererj algorithmflarsandrecognitionoftimeseriesanomalies
AT bonninj algorithmflarsandrecognitionoftimeseriesanomalies
AT diamentm algorithmflarsandrecognitionoftimeseriesanomalies
AT gvishianiad algoritmiflarstavidílennâanomalíičasovihrâdív
AT agayansm algoritmiflarstavidílennâanomalíičasovihrâdív
AT bogoutdinovshr algoritmiflarstavidílennâanomalíičasovihrâdív
AT tikhotskisa algoritmiflarstavidílennâanomalíičasovihrâdív
AT hindererj algoritmiflarstavidílennâanomalíičasovihrâdív
AT bonninj algoritmiflarstavidílennâanomalíičasovihrâdív
AT diamentm algoritmiflarstavidílennâanomalíičasovihrâdív
AT gvishianiad algoritmyflarsivydelenieanomaliivremennihrâdov
AT agayansm algoritmyflarsivydelenieanomaliivremennihrâdov
AT bogoutdinovshr algoritmyflarsivydelenieanomaliivremennihrâdov
AT tikhotskisa algoritmyflarsivydelenieanomaliivremennihrâdov
AT hindererj algoritmyflarsivydelenieanomaliivremennihrâdov
AT bonninj algoritmyflarsivydelenieanomaliivremennihrâdov
AT diamentm algoritmyflarsivydelenieanomaliivremennihrâdov
first_indexed 2025-11-26T00:06:42Z
last_indexed 2025-11-26T00:06:42Z
_version_ 1850591355567341568
fulltext © A.D. Gvishiani, S.M. Agayan, Sh.R. Bogoutdinov, S.A. Tikhotsky, J. Hinderer, J. Bonnin, M. Diament, 2004 Системні дослідження та інформаційні технології, 2004, № 3 7 TIДC ТЕОРЕТИЧНІ ТА ПРИКЛАДНІ ПРОБЛЕМИ І МЕТОДИ СИСТЕМНОГО АНАЛІЗУ УДК 519.68 ALGORITHM FLARS AND RECOGNITION OF TIME SERIES ANOMALIES A.D. GVISHIANI, S.M. AGAYAN, SH.R. BOGOUTDINOV, S.A. TIKHOTSKY, J. HINDERER, J. BONNIN, M. DIAMENT As a rule, algorithms of recognition of time series anomalies are based on time fre- quency or statistical analysis . This article is devoted to detailed formal description of new fuzzy set based algorithm FLARS (Fuzzy Logic Algorithm for Recognition of Signals). It recognizes time series anomalies by means «smooth» modelling (in fuzzy mathematics sense) of interpreter’s logic, which searches for anomalies at the record. INTRODUCTION The present article extends the fuzzy set theory approach [11] to recognition of high-frequency anomalies on time series. It may be considered as an extension of the series «Mathematical methods of geoinformatics» [1–5]. This article is de- voted to detailed formal description of new fuzzy set based algorithm FLARS (Fuzzy Logic Algorithm for Recognition of Signals). Applications of FLARS to wide spectrum of geophysical data time series along with the application of DRAS algorithm of the same family give successful results [10]. As a rule, algorithms of recognition of time series anomalies are based on time frequency or statistical analysis [6–8, 12]. An exclusion is constituted by the algorithm of «probabilistic» modelling of interpreter’s logic [9], which was de- veloped by B. Naimark already in 1966. In a certain sense, our article extends the ideas [9]. The algorithm FLARS may be considered as a results of «smooth» model- ling (in fuzzy mathematics sense) of interpreter’s logic, which searches for anomalies at the record. Moreover, FLARS is really based on fuzzy mathematic principals. We proceed from the following understanding of interpreter’s logic. At first, interpreter glances at the record and estimates activity of its sufficiently small fragments by positive numbers. At the same time, he puts some numeric marks to the centres of the fragments. In this way, from initial record interpreter necessarily proceeds to a non-negative function. It is naturally to call this function by rectification of the initial time series. Indeed, greater values of this function (Figs. 1a, 1b) correspond to more anomalous points (centres of fragments). In the other words searching the anomalies on the record can be found by searching the A.D. Gvishiani, S.M. Agayan, Sh.R. Bogoutdinov, S.A. Tikhotsky, J. Hinderer, J. Bonnin, M.Diament ISSN 1681–6048 System Research & Information Technologies, 2004, № 3 8 uplifts on its rectification (Fig. 1b). Thus, FLARS works on two levels. The local one is rectification of the record, and the global one is search of the uplifts on the rectification. Let us proceed with exact statement. FLARS LOCAL LEVEL. RECORD RECTIFICATION Activity at a record (time series) is a multivalued notion, which can change from record to record and within a record. The notion of activity doesn’t have a formal mathematical definition like notions as «set», «element», «function», etc. Thus we interpret «activity of a record» as intuitively clear notion. For its adequate modelling we introduce strictly defined «rectifications» opened for replenish- ments. Rectifying functionals serve as basis of the described below FLARS algo- rithm. Let us proceed with exact statement. We consider a discrete semiaxis + hR { , 0kh h= > , 1, 2,3, }k = … and a record (discrete function, time series) { ( ), 1, 2,3, }ky y y kh k= = = … , which is defined on a «coherent» subset (registration period) +⊂ hY R . At the semiaxis + hR we in- troduce the parameter of a local observation 0∆ > , which is divisible by «h», +∈∆ hR . The segment of the time series «y» with centre at a point «kh» a b c Fig. 1. The example of FLARS working: а — the initial record «y»; b — the rectification )(kyχ ; c — the measure of anomality )(kµ 0.5 -0.5 0 Algorithm FLARS and recognition of time series anomalies Системні дослідження та інформаційні технології, 2004, № 3 9 { }, , , ,k k h k k hy y y y−∆ +∆∆ = ∈… … 12 + ∆ hR we call by a fragment of local observation. Definition 1. A non-negative mapping :yχ ℑ→ +R defined on the set of fragments { }k yℑ= ∆ ⊂ 12 + ∆ hR we call by a functional of the time series «y». In the set { }yχ there is a subset ( )y kΦ of the functionals, which transfer anomalous fragments { }k y∆ into «uplifted» points on the graph of the corre- sponding curve { }yχ . Definition 2. We call any function ( )y kΦ by rectification of the initial time series «y». Correspondingly, we call functional yΦ by a rectifying functional of the given record «y». In FLARS we use the following functionals of time series, which in many important cases occur to be the rectifying functionals: 1. Length of the fragment ( ) 1 1 k h k j j j k h L y y y ∆ + − + ∆ = − ∆ = −∑ . 2. Energy of the fragment ( ) ( )2 k h k j k j k h E y y y ∆ + ∆ = − ∆ = −∑ , where 2 k h k j j k h hy y h ∆ + ∆ = − = ∆ + ∑ . 3. Difference of the fragment from its regression of order n 2( ) [ Regr ( )]k k h k n n j y j k h R y y jk ∆ + ∆ ∆ = − ∆ = −∑ , here as usual Regr k n y∆ is an optimal mean squares approximation of order n of the fragment k y∆ . If 0=n we get the previous functional «energy of the fragment» (see 2.): 0Regr 2k k h j ky j k h h y y h ∆ + ∆ ∆ = − = = ∆ + ∑ , ( ) ( ) 2 20 0 ( ) Regr ( ) ( )k k k h h k k j j ky j k j k h h R y y jh y y E y ∆ ∆ + + ∆ ∆ ∆ = − = − ∆ = − = − = ∆∑ ∑ . A.D. Gvishiani, S.M. Agayan, Sh.R. Bogoutdinov, S.A. Tikhotsky, J. Hinderer, J. Bonnin, M.Diament ISSN 1681–6048 System Research & Information Technologies, 2004, № 3 10 4. Oscillation of the fragment ( ) max min k k h hk j j j kj k hh O y y y ∆ ∆ + + ∆∆ = −= − ∆ = − . Illustration of rectification in the case of natural electric potential in the re- gion of La Furnaise volcano (Reunion island, France) is given in Fig. 1,b . FLARS GLOBAL LEVEL Having the results of the rectification procedure (local level operations) FLARS starts to search uplifts on the corresponding graph. As it is shown at the Fig.1b the relief of the rectification may be enough complicated. Therefore, generally speak- ing analysis of only vertical level of the curve ( )y kΦ is insufficient to define of the uplifts. Anomalies may not possess constant high intensity. Often, the anoma- lies they are heterogeneous. There is a majority of active fragments, divided by short non-anomalous segments. In this case the corresponding fragments of recti- fication occur to be oscillating uplifts. Analysis of rectifications ( )y kΦ shows that its domain of definition Υ consists of three types of points: anomalous, which belonging to uplifts, background (calm), located far enough from the uplifts, and potentially anomalous (not calm), which have intermediate character. The latter formally not belong to uplifts, but locate close enough to them to experience their influence. FLARS makes such division of Υ into above three subsets in two steps. At the one the algorithm constructs an alternating-sign measure of extremality ( ) [ 1,1]kµ ∈ − , which characterises yΦ in a point «kh». Possibility of growth of ( )kµ from –1 to +1 corresponds to growth of «maximality of yΦ in the point « kh » and in this way to growth of anomality of the initial record in that point. Apparently, ( ) 1kµ = corresponds to maximum anomality and when ( ) 1kµ = − — to maximum calmness in the point «kh». Being based on ( )kµ , FLARS chooses in Υ the segment A, that consists of certainly anomalous points. On the next step the complement \A Y A= of non-anomalous points, is divided by FLARS into the set of calm (background) points S ′ and the set A′ of not calm (potentially anomalous) points. One-sided background measures αL ( )y kΦ and αR ( )y kΦ , which characterise the rate of calmness of the rectification yΦ from left and right hand sides of the point «kh», play key role in the division A S A′ ′= ∪ . It should be noticed here that FLARS principally differs from DRAS [11], which is based on the same principle of rectification. Indeed, FLARS at first recognizes the fragments of a certain anomality which form the set A . On the next stage frag- ments of a potential anomality A′ are added to the set A . On the contrary, DRAS at the first stage recognises the set A A′∪ of potential anomalies and at the sec- ond stage establishes certainly anomalous zones A A A′⊂ ∪ . Let us proceed with exact statements. Algorithm FLARS and recognition of time series anomalies Системні дослідження та інформаційні технології, 2004, № 3 11 First we introduce the FLARS free parameter Λ >> ∆ , +∈Λ hR , which we call by parameter of a global observation,. The following set we call as a fragment of a global observation ( ), , ( ), , ( )k y y y yk k k h h Λ Λ⎧ ⎫Λ Φ = Φ − Φ Φ + ∈⎨ ⎬ ⎩ ⎭ … … 12 + Λ hR . (1) We denote by ℵ the set of fragments (1). In FLARS we will use the following weight function on the segment [ , ]kh kh− Λ + Λ h kkhh kk +Λ −−+Λ =)(δ . (2) It is easy to see that the graph of this weight function (2) looks like an isos- celes triangle with the base 2 ⋅ Λ and the height 1. The function kδ represents another model of global observation of the frag- ment k yΛ Φ . In this model we, in a certain sense, «look at the fragment» giving bigger weight to the points ( )kh k∈Λ , which are located closer to the centre «kh». We symbolize ( ) { [ , ] : ( ) ( )}y yk k h kh kh k k+ + +Λ = ∈ −Λ + Λ Φ ≥ Φ , ( ) { [ , ] : ( ) ( )}y yk k h kh kh k k− − −Λ = ∈ −Λ + Λ Φ <Φ . The following sum will be an «argument» for minimality (backgroundness) of the point «kh» ( )( , ) ( ) ( ) ( ) : ( )y y kk k k k k h kσ δ+ + + + +Λ = Φ −Φ ∈Λ∑ . (3) At the same time the following sum will be an «argument» for maximality (anomality) of the point «kh» ( )( , ) ( ) ( ) ( ) : ( )y y kk k k k k h kσ δ− − − − −Λ = Φ −Φ ∈Λ∑ . (4) The measure ( )kµ is a result of the comparison of the «arguments» (3) and (4) ( , ) ( , )( ) ( ) [ 1,1] max ( ( , ), ( , )) k kk k k σ σµ µ σ σ σ σ − + − + + − Λ − Λ = < = ∈ − Λ Λ . The measure ( )kµ gives «more delicate assessment» of difference between positive numbers than just a simple difference | |x y− . Indeed, the difference in age between five-year-old and ten-year-old children is more considerable than the same difference between 70-year-old and 75-year-old people. Apparently, it is reflected in the values of the measure µ : ( 1(5 10) 2 µ < = and 1(70 75) 15 µ < = ); while 10 5 5 75 70− = = − . A.D. Gvishiani, S.M. Agayan, Sh.R. Bogoutdinov, S.A. Tikhotsky, J. Hinderer, J. Bonnin, M.Diament ISSN 1681–6048 System Research & Information Technologies, 2004, № 3 12 Decision on the presence of an anomaly is taken in FLARS by analysis of the vertical level. Definition 3. Let [ 1,1]α∈ − . A point kh Y∈ is α -anomalous, if ( )kµ α> . We denote by Aα the whole set of the anomalous points. The set Aα , unfortunately, does not give a complete picture of the anomality of the record «y». Indeed, as it is seen on the Fig.1, c, there can be narrow zones between the fragments of anomality located closely with each other. These zones should not be considered as calm zones since they are too small. To take it into account we transform the initial measure ( )kµ and construct above-mentioned one-sided background measures αL ( )y kΦ and αR ( )y kΦ . For that we need «the helping function» ( )xαψ (Fig. 2). , 1 1( ) , 1 1 x x x x x α α α αψ α α α −⎧ ≤ ≤⎪⎪ −= ⎨ −⎪ − ≤ ≤ ⎪ +⎩ , where 1 1α− ≤ ≤ . It’s easy to see that ( ) ( ( ))k kα αµ ψ µ= possesses the following properties: ( ) 0 ( )k kαµ µ α> ⇔ > , ( ) 0 ( )k kαµ µ α= ⇔ = , (5) ( ) 0 ( )k kαµ µ α< ⇔ < . From (5) we can simply state. Statement 1. If ( ) 0kαµ > , the point kh Y∈ is α -anomalous. Let us introduce left and right background measures. We assign Θ — the parameter of intermediate observation: ∆ < Θ ≤ Λ . Thus, -0.8 -0.4 0 0.4 0.8 -0.8 -0.4 0 0.4 0.8 α=0.3 Fig. 2. The helping function )(xαψ Algorithm FLARS and recognition of time series anomalies Системні дослідження та інформаційні технології, 2004, № 3 13 αL ( ) ( ) ( ) , [ , 0] ( ) k y k kh k k k k hk αµ δ δ ΘΦ = ∈ −∑ ∑ , (6) αR ( ) ( ) ( ) , [0, ] ( ) k y k kh k k k k hk αµ δ δ ΘΦ = ∈ +∑ ∑ . (7) The parameter Θ in FLARS plays similar role to the parameter of a global observation in the algorithm DRAS [11]. It is necessary to emphasise that formu- las (6) and (7), which define left and right background measures in our case, dif- fer from functions )(kL yΦα and )(kR yΦα , which define background measures for the algorithm DRAS [11], although both are introduced for the same purpose. Definition 4. We call the point kh A∈ α-not calm (potentially anomalous), if ( ) 0)(),(max >ΦΦ kk yy αα RL . Definition 5. We call the point kh A∈ is α-calm (background), if ( ) 0)(),(max ≤ΦΦ kk yy αα RL . Informaly the constructed measures can be interpreted as follows. The less are values of )(kyΦαL and )(kyΦαR — the calmer (α-calmer) is the record «y» in the point «kh» (correspondently from the left and from the right). Contrariwise, the greater are values of the membership function the «more anomalous» (more α- anomalous) is the initial record in the given point. Thus, )(kyΦαL and )(kyΦαR may be interpreted as alternating-sign membership functions of the fuzzy set of not calm points kh Y∈ . We denote by S ′ the set of the background points, and A′ the set of poten- tially anomalous points. Thus, the searched division of the set Y is constructed: Y A A S′ ′= ∨ ∨ . (8) FLARS FORMAL ALGORITHMICAL MODEL FLARS has the following free parameters to be chosen by user: a) +∈∆ hR — parameter of local observation; b) +∈Λ hR , ∆>>Λ — parameter of global observation; c) [ 1,1]α∈ − — vertical level of extremality; d) +∈Θ hR , ∆ < Θ ≤ Λ — parameter of intermediate observation. In more «flexible» implementation of the algorithm additional parameter 1 1β− ≤ ≤ is introduced. It is horizontal background level. By substituting the condition ( ) 0)(),(max >ΦΦ kk yy αα RL by the condition ( )(max kyΦαL , ) βα >Φ )(kyR in the definition 2 and the in equation ( )(max kyΦαL , ) 0)( ≤Φ kyαR by the condition ( ) βαα ≤ΦΦ )(),(max kk yy RL in definition 3 for [ 1,1]β∈ − we obtain another, «more flexible» version on FLARS. In other words, upon proper «tuning» of the algorithm it pays attention only to those outputs A.D. Gvishiani, S.M. Agayan, Sh.R. Bogoutdinov, S.A. Tikhotsky, J. Hinderer, J. Bonnin, M.Diament ISSN 1681–6048 System Research & Information Technologies, 2004, № 3 14 above level «α», which are massive enough by time: they will be surrounded by an aureole of not calm points. Such «tuning» is achieved with the help of a free parameter [ 1,1]β∈ − and conditions βα ≤Φ )(kyL , ) βα ≤Φ )(kyR . For each «β» a corresponding dichotomy of non-anomalous points of A arises: [ ] { }βαα ≤ΦΦ∈=′ )(),(max: kkAhkS yy RL , [ ] { }βαα >ΦΦ∈=′ )(),(max: kkAhkS yy RL . It is natural to call parameter «β» a horizontal level of a background, since a massiveness of anomaly by time is its horizontal extension. The bigger is «β» the bigger segment of a record is related to a background and the smaller aureole will correspond to each anomalous fragment. Block-scheme of the algorithm FLARS is given in Fig.3. THE APPLICATION OF FLARS FOR THE SUPERCONDUCTING GRAVIMETER DATA PREPROCESSING The network of the Superconducting Gravimeters (SG) was started in the course of Global Geodynamic Project at the 1st of July 1997. Now it consists of about 20 instruments deployed all around the globe that continuously measure the time variations of gravity with the accuracy reaching the 29 m/s10− and sampling in- terval less or equal to 1 minute. Thus it is clear that the total amount of SG data is Record rectification yΦ Anomality measure )(kµ Record fragmentation )( hkyyk = Anomaly on the record Background on the record Potential anomaly on the record Background measures )(),( kRkL yy ΦΦ αα No anomaly on the record >0 <0∆ Λ Fig. 3. The block-scheme of the algorithm FLARS Algorithm FLARS and recognition of time series anomalies Системні дослідження та інформаційні технології, 2004, № 3 15 now really huge and the processing and analysis of this data possess a real scien- tific and technical challenge. The main purpose of the GGP is to reveal the information about the Earth’s inner structure and dynamics by interpreting the SG data in terms of Earth’s tides as well as non-tidal gravity variations that are related to the Earth axis precession, core nutations and core modes. Some processes that could manifest themselves in very weak periodical gravity variations were theoretically predicted, thus the problem arises of proving or rejecting these hypotheses on the basis of compre- hensive analysis of SG data. The scientific approaches that are used to reveal the periodical variations are generally based on the harmonic (or Fourier) analysis. A process of revealing the weak peaks in the Fourier power spectra could be very unstable with respect to noise in the data. On the other hand it is clear that SG time series always contain a significant noise associated with a wide spectra of sources. Even the small rain at the site of the SG deployment would produce a substantial signal of tens of mi- crogals. Other noise sources are the earthquakes, atmospheric pressure variations, soil humidity variations, snow cover and technical sources of external (autos, trains and nearby factories) as well of internal (electrical power instabilities, ma- nipulations with instrument, etc.) origin. It is important that all these sources pro- duce the noise of a wide variability of features such as amplitudes, frequencies and specific shapes that may include spikes, gaps, offsets and others. Thus it is difficult to remove all these noise signals on the base of convenient noise reduc- tion approaches such as frequency filtering or cutting by the signal amplitude or amplitude of signal time derivative. But FLARS algorithm by its fuzzy logic na- ture provides a powerful tool for the solution of this problem. We have successfully applied the FLARS algorithm for the processing of data recorded by the SG deployed in Strasbourg, France, in the period from April to December 1997 (Fig. 4). These records were processed previously by different authors [13] and the detailed comparison of different approaches could be per- formed. It has been demonstrated, in particular, that algorithm FLARS is able to find almost all noise events on SG records. Рис. 4. An example of noise (interval marked black) detection in SG data. Note the stable detection of different noise patterns: first four signals are the seismic waves distant earth- quakes, the fifth disturbance of unknown origin and the sixth is the offset associated with the instrument operation A.D. Gvishiani, S.M. Agayan, Sh.R. Bogoutdinov, S.A. Tikhotsky, J. Hinderer, J. Bonnin, M.Diament ISSN 1681–6048 System Research & Information Technologies, 2004, № 3 16 Depending on choice of free parameters it could act in a more «strong» or «soft» rejection approaches used by different authors. The present version of the FLARS algorithm software adopt the «TSoft» data format which is the standard for the SG community. REFERENCES 1. Gvishiani A.D., Agayan S.M., Bogoutdinov Sh.R. Mathematical geoinformatics methods. I. On a new approach to clusterisation // Kibernetika i sistemny analiz. — 2002. — № 2. — P. 104–122. 2. Gvishiani A.D., Diament M., Mikhailov V.O., Galdeano A., Agayan S.M., Bogoutdi- nov Sh.R., Graeva E.M. Artificial Intelligence Algorithms for Magnetic Anomaly Clustering // Physics of the Solid Earth. — 2002. — № 7. — P. 13–38. 3. Mikhailov V.O., Galdeano A., Diament M., Gvishiani A., Agayan S., Bogoutdinov Sh., Graeva E., Sailhac P. Application of artificial intelligence for Euler solution clustering // Geophysics. — 2003. — 68, № 1. P. 168–180. 4. Gvishiani A., Dubois J.O. Dynamic Systems and Dynamic Classification Problems in Geophysical Applications // Springer, 1998. — 256 p. 5. Gvishiani A., Dubois J.O. Artificial Intelligence and Dynamic Systems for Geo- physical Applications // Springer, 2002. — 347 p. 6. Kedrov O.K., Polikarpova L.A., Steblov G.M. Detection Algorithm for Weak Short- Period Seismic Signals, Based on the Frequency–Time Analysis of Three- Component Records in the Real Time Mode // Izvestiya, Physics of the Solid Earth. — 1998. — № 8. — P. 30–45. 7. Magotra N., Ahmed N., Chael E. Seismic event detection and source location using single-station (three-component) data // Bull. Seism. Soc. Am. — 1987. — 77. — P. 958–971. 8. Plesinger A., Hellweg M., Seidl D. Interactive high-resolution polarization analysis of broadband seismogram // J. Geophys. — 1986. — 59. — P. 129–139. 9. Naymark B.M. Algoritmy dlya obnaruzheniya seysmicheskogo signala na fone mik- roseym // Vychislitelnaya seysmologiya. — 1966. — № 1. — P. 5–9. 10. Zlotnicki J., Mikhailov V., Le Mouël J., Gvishiani A., Yvetot P., Agayan S., Fanquet F., Bogoutdinov Sh., Donnadieu G. Ulf magnetic and electric signals related to volcanic activity: la Fournaise case (Reunion island) // III International Work- shop on Magnetic, Electric and Electro Magnetic Methods in Seismology and Volcanology (MEEMSV-2002). — 2002. — 127 p. 11. Gvishiani A.D., Agayan S.M., Bogoutdinov Sh.R., Ledenev A.V., Zlotnicki J., Bon- nin J. Mathematical geoinformatics methods. II. The fuzzy logic algorithms for recognition of anomalies on time series // Kibernetika i sistemny analiz. — 2003. — № 4. — P. 103–111. 12. Levin B.R. Teoreticheskie osnovy statisticheskoy radiotekhniki. — Moscow: Sov. radio. — 1968. — 504 p. 13. Hinderer J., Rosat S., Crossley D., Amalvict M., Boy J.P. & Gegout P. (2002) Influ- ence of different processing methods on the retrieval of gravity signals from GGP data // Bulletin d'Information des Marées Terrestres (BIM). — 135. — P. 10653– 10668. Received 30.04.2004 From the Editorial Board: The article corresponds completely to submitted manu- script.