FD-method for a nonlinear eigenvalue problem with discontinuous eigenfunctions

An algorithm for solution of a nonlinear eigenvalue problem with discontinuous eigenfunctions is developed. The numerical technique is based on a perturbation of the coefficients of differential equation combined with the Adomian decomposition method for the nonlinear term of the equation. The propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
Hauptverfasser: Makarov, V.L., Rossokhata, N.O.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/7247
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:FD-method for a nonlinear eigenvalue problem with discontinuous eigenfunctions / V.L. Makarov, N.O. Rossokhata // Нелінійні коливання. — 2007. — Т. 10, № 1. — С. 126-143. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:An algorithm for solution of a nonlinear eigenvalue problem with discontinuous eigenfunctions is developed. The numerical technique is based on a perturbation of the coefficients of differential equation combined with the Adomian decomposition method for the nonlinear term of the equation. The proposed approach provides an exponential convergence rate dependent on the index of the trial eigenvalue and on the transmission coefficient. Numerical examples support the theory. Розроблено алгоритм для числового розв'язування нелінійних задач на власні значення з розривними власними функціями. В основі числового методу лежить збурення коефіцієнтів диференціального рівняння в поєднанні з методом декомпозиції Адомяна нелінійної частини рівняння. Запропонований підхід забезпечує експоненціальну швидкість збіжності, яка залежить від порядкового номера власного значення та коефіцієнта трансмісії. Наведені числові розрахунки підтверджують теоретичні висновки.
ISSN:1562-3076