Investigation of the hollow beam structure on optical transition radiaton

The features of studying the structure of a dense annular beam with OTR from metal targets at electron energy ≤ 50 keV are described. The image of the cross section of the annular beam with sub-millimeter wall thickness is obtained.

Збережено в:
Бібліографічні деталі
Дата:2004
Автори: Ayzatsky, M.I., Kushnir, V.A., Mytrochenko, V.V., Opanasenko, A., Zhiglo, V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2004
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/79365
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Investigation of the hollow beam structure on optical transition radiaton / M.I. Ayzatsky, V.A. Kushnir, V.V. Mytrochenko, A. Opanasenko, V. Zhiglo, // Вопросы атомной науки и техники. — 2004. — № 2. — С. 123-125. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-79365
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-793652025-02-09T20:36:13Z Investigation of the hollow beam structure on optical transition radiaton Дослідження структури кільцевого пучка за перехідним оптичним випромінюванням Исследование структуры кольцевого пучка по переходному оптическому излучению Ayzatsky, M.I. Kushnir, V.A. Mytrochenko, V.V. Opanasenko, A. Zhiglo, V. Элементы ускорителей The features of studying the structure of a dense annular beam with OTR from metal targets at electron energy ≤ 50 keV are described. The image of the cross section of the annular beam with sub-millimeter wall thickness is obtained. Описані особливості дослідження структури щільного кільцевого пучка за допомогою перехідного оптичного випромінювання з металевих мішеней при енергії електронів до 50 кеВ. Одержано зображення поперечного перерізу кільцевого пучка з товщиною стінки менше міліметра. Описаны особенности исследования структуры плотного кольцевого пучка электронов с помощью переходного оптического излучения из металлических мишеней при энергии электронов до 50 кэВ. Получено изображение поперечного сечения кольцевого пучка с толщиной стенки меньше миллиметра. Authors express gratitude to the employees of the R&D "Accelerator" for the help in experiment. 2004 Article Investigation of the hollow beam structure on optical transition radiaton / M.I. Ayzatsky, V.A. Kushnir, V.V. Mytrochenko, A. Opanasenko, V. Zhiglo, // Вопросы атомной науки и техники. — 2004. — № 2. — С. 123-125. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 29.25.BX, 41.75.FR https://nasplib.isofts.kiev.ua/handle/123456789/79365 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Элементы ускорителей
Элементы ускорителей
spellingShingle Элементы ускорителей
Элементы ускорителей
Ayzatsky, M.I.
Kushnir, V.A.
Mytrochenko, V.V.
Opanasenko, A.
Zhiglo, V.
Investigation of the hollow beam structure on optical transition radiaton
Вопросы атомной науки и техники
description The features of studying the structure of a dense annular beam with OTR from metal targets at electron energy ≤ 50 keV are described. The image of the cross section of the annular beam with sub-millimeter wall thickness is obtained.
format Article
author Ayzatsky, M.I.
Kushnir, V.A.
Mytrochenko, V.V.
Opanasenko, A.
Zhiglo, V.
author_facet Ayzatsky, M.I.
Kushnir, V.A.
Mytrochenko, V.V.
Opanasenko, A.
Zhiglo, V.
author_sort Ayzatsky, M.I.
title Investigation of the hollow beam structure on optical transition radiaton
title_short Investigation of the hollow beam structure on optical transition radiaton
title_full Investigation of the hollow beam structure on optical transition radiaton
title_fullStr Investigation of the hollow beam structure on optical transition radiaton
title_full_unstemmed Investigation of the hollow beam structure on optical transition radiaton
title_sort investigation of the hollow beam structure on optical transition radiaton
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2004
topic_facet Элементы ускорителей
url https://nasplib.isofts.kiev.ua/handle/123456789/79365
citation_txt Investigation of the hollow beam structure on optical transition radiaton / M.I. Ayzatsky, V.A. Kushnir, V.V. Mytrochenko, A. Opanasenko, V. Zhiglo, // Вопросы атомной науки и техники. — 2004. — № 2. — С. 123-125. — Бібліогр.: 6 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT ayzatskymi investigationofthehollowbeamstructureonopticaltransitionradiaton
AT kushnirva investigationofthehollowbeamstructureonopticaltransitionradiaton
AT mytrochenkovv investigationofthehollowbeamstructureonopticaltransitionradiaton
AT opanasenkoa investigationofthehollowbeamstructureonopticaltransitionradiaton
AT zhiglov investigationofthehollowbeamstructureonopticaltransitionradiaton
AT ayzatskymi doslídžennâstrukturikílʹcevogopučkazaperehídnimoptičnimvipromínûvannâm
AT kushnirva doslídžennâstrukturikílʹcevogopučkazaperehídnimoptičnimvipromínûvannâm
AT mytrochenkovv doslídžennâstrukturikílʹcevogopučkazaperehídnimoptičnimvipromínûvannâm
AT opanasenkoa doslídžennâstrukturikílʹcevogopučkazaperehídnimoptičnimvipromínûvannâm
AT zhiglov doslídžennâstrukturikílʹcevogopučkazaperehídnimoptičnimvipromínûvannâm
AT ayzatskymi issledovaniestrukturykolʹcevogopučkapoperehodnomuoptičeskomuizlučeniû
AT kushnirva issledovaniestrukturykolʹcevogopučkapoperehodnomuoptičeskomuizlučeniû
AT mytrochenkovv issledovaniestrukturykolʹcevogopučkapoperehodnomuoptičeskomuizlučeniû
AT opanasenkoa issledovaniestrukturykolʹcevogopučkapoperehodnomuoptičeskomuizlučeniû
AT zhiglov issledovaniestrukturykolʹcevogopučkapoperehodnomuoptičeskomuizlučeniû
first_indexed 2025-11-30T14:01:43Z
last_indexed 2025-11-30T14:01:43Z
_version_ 1850224205602226176
fulltext INVESTIGATION OF THE HOLLOW BEAM STRUCTURE ON OPTICAL TRANSITION RADIATON M.I. Ayzatsky, V.A. Kushnir, V.V. Mytrochenko, A. Opanasenko, V. Zhiglo National Science Center "Kharkov Institute of Physics & Technology", Kharkiv 61108 E-mail: zhiglo@kipt.kharkov.ua The features of studying the structure of a dense annular beam with OTR from metal targets at electron ener- gy ≤ 50 keV are described. The image of the cross section of the annular beam with sub-millimeter wall thickness is obtained. PACS: 29.25.BX, 41.75.FR 1. INTRODUCTION One of directions in development of powerful RF sources is the development of cluster klystrons with the annular structure of a beam [1]. Experimental study of the stability and formation of such beams requires spa- tial resolution of measurement of their structure less than 0.01 mm. This requirement, at a beam power densi- ty of about 1010 W/m2, makes usage of a conventional probe or scintillator techniques rather complicated. Op- tical transient radiation (OTR) from thick cooled targets is alternative technique in this case. However, till now OTR diagnostics was utilized, basically, for relativistic beams under small thermal loads of targets. Application of this technique for diagnostics of low-energy electron beams, that began recently [2], still requires extensive researches. The present work describes features of studying the structure of a dense annular beam with OTR from metal targets at electron energy ≤50 keV. Possibility of OTR registration in this case is limited by the two main fac- tors. Firstly, a solenoid, which is needed to transport the beam, limits an aperture of the optical system. Second- ly, because of low energy of particles the total power of the beam is dissipated in a thin surface layer of a target that causes its thermal erosion. Necessity of carrying out researches of transversal structure of an annular beam arose in the context of development of a X-band cluster klystron with an anode voltage of 50 kV [3]. 2. THEORY It is convenient to analyze a transversal structure of a beam in the plane, which is perpendicular to the direc- tion of beam propagation. Therefore orientation of a tar- get was chosen perpendicularly to the beam. Further, beams with a longitudinal energy, which essentially ex- ceeds transverse one, will be considered. In this case it is possible to take into account only normal incident an- gle of electrons on the target. Using the spectral density of the radiation energy of a charge е crossing a boundary of a metal on a normal [4], the OTR brightness emitted by the electron beam with the pulse current density j is defined as: ( ) 2 1/ 2 22 1/ 2 sin cos( ) cos 11 cos ejB c β θ ε θθ ω π ε θβ θ й щ = ∆Чк ъ +−к ъл ы (1) where β = v/c is the relative velocity of an electron, θ is the observation angle, δΩ is the solid angle in the direc- tion of observation, ω is the circular frequency of radiat- ed waves, ε is the relative dielectric permeability of the metal, ∆ω = 2.018×1015 Hz is the visible part of a spec- trum. Proceeding from the above-mentioned goal of a practical application of the OTR technique, we will con- sider the radiation of an annular beam with the energy of 50 keV, the external radius of 4 mm, the wall thick- ness of 1 mm and the current of 10 A (j=45 A/cm2). For this case the dependence (1) is shown in Fig.1. 0 10000 20000 30000 40000 50000 60000 0 10 20 30 40 50 60 70 80 90 Angle of observation in degrees B ri g h tn e s s i n c d /m 2 Fig.1. The dependence of radiation brightness on the angle of observation This dependence can be used for calculation of an exposition at photographing. However, for the visual re- search of pulse beams, the correction is required. It is connected with the inertia of visual sensation which dis- appears gradually during a relaxation time τ f = 0.05...0.2 s depending on the brightness. At the peri- od of pulse repetition T << τf, the brightness of obser- vation B(T, τ) slightly differs from its average value [5]. It can be shown that for our experimental conditions (pulse duration of 4∙10-6 s and repetition period of 0.1 s) the brightness of observation is 1.38∙10–4 times of that value from (1). 3. ANALYSIS OF OPTICAL SYSTEM As follows from Fig. 1, the maximum of radiation is at θm = 73°. Capture of such an angle by the optical sys- tem, without significant aberrations is impossible [5]. Therefore, the optical system directed at an angle θ ≈ θm usually sees only a limited area around of the maximum of radiation. Such a scheme is shown in Fig.2. In this case the position of the target is inclined relatively to the optical axis that causes known difficulties during trans- fer of the three-dimensional image because of a limited depth of focus and perspective distortions. Therefore, the small angle θ is preferable. ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.123-125. 123 mailto:zhiglo@kipt.kharkov.ua Y θ U Y y R f f x x0 e- γ θ mirror target lens θ1 θ2 photo plate 1 2 Y΄ Fig. 2. The scheme of registering OTR The condition of sharpness of the image is given: 1tg(U) 2tg( ) Y Yθ ∆ Ј Ч , (2) where Y is the beam radius on the target, Y∆ is the needed linear resolution, U is the aperture angle. A high resolution can be obtained at a large θ only for small U as it follows from Eq. (2). For ∆Y/Y = 0.01 and θ0 = 30°, U = 0.009°. This limitation of the system optical power can be removed by arrangement of a re- gistering photoplate in the plane of the image 1, as it is shown in Fig. 2. To estimate a gain in sensitivity of measurements, we will define luminosity of the images in planes 1 and 2 taking into account (2) and definition: 2 0 0 1 ( , , )sin( ) U E B u u d du M π θ ϕ ϕ= т т , (3) where u is the aperture angle of the ray, φ is the azimuth of the ray, M is the magnification of the subject area. If the optical axis coincides with the direction of observa- tion then B(u,θ,φ) = B(ζ), where cos(ζ) = cos(u) cos(θ) + cos(φ)sin(u) sin(θ). The relation of E1/E2 at K = 3 and A = 1/5.6 is given in Fig.3. 0 50 100 150 200 250 300 350 0 10 20 30 40 50 60 Angle of observation in degrees E 1 /E 2 Fig.3. The simulated relation of the image luminosities in planes 1 and 2 (see Fig.2) Let us analyze the relationship connecting A, K and U. The aperture angle U in Eq. (3) has the limitation caused by the non-uniform brightness of the target which is connected with the different angles of observa- tion θ1, θ, θ2 of the various points on the target (see Fig.2). Let d denotes a distance from the objective to the target, then 1 2t ( ) t ( ) cos( ) Yg g d θ θ θ = ± . (4) From Eq. (4) and Eq. (1) it is possible to show that ΔB/B < 0.1 at d > 300 mm for Y = 5mm and θ = 30˚. Us- ing the relations AK/(K+1) = R/d and R ≤ D/4, where D is the vacuum chamber diameter, which limits transver- sal dimension of the optical system, we obtain: A ≤ D(K+1)/(4Kd) . (5) The depth of focus at visual researches does not limit A, due to focusing. The reason of perspective distortion is dependence K(x) = -f/x. Its value is estimated as: 0 0 sinK Y K x θ∆ = . (6) Here K0 = K(x0), ΔK = K(x) - K(x0). For technical rea- sons: f ≥ 4R [5], and R ≤ 0.25D. Therefore, 0 0 sin K DK K Y θ ∆ Ј Ч . (7) It is necessary to note that the value D is less than the diameter of the solenoid. As follows from Eq. (4) and Eq. (7), the reduction of the luminosity error and of the beam cross-section error requires the reduction of θ that results in reduction of the brightness and, hence, of the current measurement threshold of the beam. From Eqs. (5), (7) one can see, that small optical magnifications are necessary for re- ducing the distortions of the image and increasing its lu- minosity. 4. EXPERIMENTAL SETUP AND RESULTS The special device (see Fig.4) was created for the vi- sual examination of the electron beam generated by the magnetron gun [3] with the error ∆Y = 0.1 mm. Fig.4. Experimental setup: 1 - block of objective, ocular and mirror, 2 - output window, 3 - mirror, 4 - target The diameter D was of 140 mm. The radius of the output optical window of 22 mm limited the optical aperture. The distance between the target and the object- ive d was of 548 mm. As basic elements of the optical system the objective with the resolution in the focal plane of 1/30 mm, A = 1/9, f = 105 mm and the ocular with foc = 17.8 mm and θ = 30° were chosen. The calcu- lated values were the following: K = 0.28, ΔY = ΔY′/K = 0.12 mm, ΔY/Y = 0.024, the subjective magnification G = f/foc = 5.9, the diameter of the output iris δ = 2R/G = 4 mm, tg(U) = 23.3/548 = 0.024. At the given D, from Eq. (5) it follows A = ½. It is much more than the chosen A = 1/9. Reducing of A does not cause, however, the loss of luminosity of the retina, but only limits the allowable subjective magnification [5]. Such system is inefficient at photographing because of the loss of light exposure E ~ A2. The condition (2) was sat- isfied, therefore, focusing was not required. As follows from Eq. (6), ΔK/K0 is 0.15 that exceeds the required value 0.1. As d > 300 mm, the error in the luminosity of 124 the target is less than 10%. To the obtained linear resol- ution ΔY = 0.12 mm corresponding is the angle of view 2.7′ (at G =5.9), that is higher then the eye resolution, but lower than the recommended value 4′ [5]. Such a choice of G is made to preserve the subjective bright- ness of an image. For specified δ = 4 mm the calculated subjective lu- minosity is 0.12 lx, that is 30% of the normal light ex- posure of a retina [5]. The experiments have shown that a beam with the current 10 A is easily observed. However, at decreasing the beam current and energy down to 2 A and 25 keV, respectively, the luminosity of the image and the resolu- tion is deficient for correct measurements. It corre- sponds to j = 9 A/cm2 and the beam power density of 2.2∙105 W/cm2. In this case, the calculated light expo- sure of a retina is 5% of normal. We can state that the above-specified beam parameters correspond to the sen- sitivity of the device. The view of this beam in the ocu- lar is shown in Fig.5. This image was obtained with the digital camera and numerically corrected on the angle θ = 30º. The elliptic form of the beam is caused by the conditions of its formation [3]. The visual examination of the titanic and silver tar- gets showed that the beam forms a mark with the sur- face roughness sizes of 0.02...0.05 mm. 5. DISCUSSION The sensitivity of the created installation is limited by the aperture of an eye, therefore it is maximal for vi- sual researches. The detailed description of the image structure requires a brightness which is on the order of magnitude greater, than the sensitivity. Therefore for the visual OTR - diagnostics at the beam energy 50 keV the limit of the beam density is about 45 A/cm2. The spatial resolution is limited by dimensions of the solenoid (see (7)), or by sizes of the free space need- ed to contain the optical system, that can be much less than the solenoid diameter. The obtained resolution of 0.12 mm can be improved, as follows from the technical capabilities of solenoids, up to 0.03 mm. The threshold power density of 2.2∙105 W/cm2 exceeds the evaporation limit ~ 1∙105 W/cm2. Therefore, finally, the linear reso- lution is limited by the sizes of surface protrusions 0.02...0.05 mm. As a probable decision, of interest is the graphite target [2], though the carrying of carbon in vac- uum requires study in this case. Authors express gratitude to the employees of the R&D "Accelerator" for the help in experiment. REFERENCES 1. R.B. Palmer, R. Miller. A cluster klystron. SLAC-PUB-4706, Sept. 1988. 2. C. Bal, E. Bravin, E. Chevallay et al. OTR from non-relativistic electrons. CERN-AB-2003-062 BDI. 3. N.I. Ayzatsky, V.N. Boriskin, A.N. Dovbya et al. Generation of Electron Beam in a Multicath- ode Secondary-Emission Source // Technical Physics, 2003, v.48, No.2, p.245–249. 4. V.L. Ginsburg, V.N. Cytovich. Transition Ra- diation and Scattering. M.: Nauka, 1984, p.360. 5. B. Tudorovskiy. Theory of optical devices. M., 1952, v.2, p.567. 6. V.K. Popov. Approximate calculation of modes of a pulse beam-processing of materials // Elec- tr. tekhnika. Ser: Electonika SVCh, 1967, v.1, p.122–130. ИССЛЕДОВАНИЕ СТРУКТУРЫ КОЛЬЦЕВОГО ПУЧКА ПО ПЕРЕХОДНОМУ ОПТИЧЕСКОМУ ИЗЛУЧЕНИЮ Н.И. Айзацкий, В.Ф. Жигло, В.А. Кушнир, В.В. Митроченко, А. Опанасенко Описаны особенности исследования структуры плотного кольцевого пучка электронов с помощью пере- ходного оптического излучения из металлических мишеней при энергии электронов до 50 кэВ. Получено изображение поперечного сечения кольцевого пучка с толщиной стенки меньше миллиметра. ДОСЛІДЖЕННЯ СТРУКТУРИ КІЛЬЦЕВОГО ПУЧКА ЗА ПЕРЕХІДНИМ ОПТИЧНИМ ВИПРОМІНЮВАННЯМ М.І Айзацький, В.Ф. Жигло, В.А. Кушнир, В.В. Митроченко, А. Опанасенко Описані особливості дослідження структури щільного кільцевого пучка за допомогою перехідного оптичного випромінювання з металевих мішеней при енергії електронів до 50 кеВ. Одержано зображення поперечного перерізу кільцевого пучка з товщиною стінки менше міліметра. ___________________________________________________________ PROBLEMS OF ATOMIC SIENCE AND TECHNOLOGY. 2004. № 2. Series: Nuclear Physics Investigations (43), p.123-125. 125 National Science Center "Kharkov Institute of Physics & Technology", Kharkiv 61108 E-mail: zhiglo@kipt.kharkov.ua 1. INTRODUCTION 2. THEORY 3. ANALYSIS of OPTICAL SYSTEM 4. EXPERIMENTAL SETUP and RESULTS 5. DISCUSSION REFERENCES ДОСЛІДЖЕННЯ СТРУКТУРИ КІЛЬЦЕВОГО ПУЧКА ЗА ПЕРЕХІДНИМ ОПТИЧНИМ ВИПРОМІНЮВАННЯМ