Enrichment of colloidal solutions by nanoparticles in underwater spark discharge
The underwater spark discharge between manganese granules was studied. Optical emission spectroscopy meth-ods were used for diagnostics of such discharge plasma. The colloidal solution with manganese nanoparticles was produced by this discharge. The biological applications of this colloid were analy...
Saved in:
| Date: | 2015 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
| Series: | Вопросы атомной науки и техники |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/82232 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Enrichment of colloidal solutions by nanoparticles in underwater spark discharge / K. Lopat’ko, Y. Aftandiliants, A. Veklich, V. Boretskij, N. Taran, L. Batsmanova, V. Trach, T. Tugai // Вопросы атомной науки и техники. — 2015. — № 1. — С. 267-270. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-82232 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-822322025-02-09T20:41:36Z Enrichment of colloidal solutions by nanoparticles in underwater spark discharge Обогащение коллоидных растворов наночастицами в подводном искровом разряде Збагачення колоїдних розчинів наночастинками в підводному іскровому розряді Lopat’ko, K. Aftandiliants, Y. Veklich, A. Boretskij, V. Taran, N. Batsmanova, L. Trach, V. Tugai, T. Низкотемпературная плазма и плазменные технологии The underwater spark discharge between manganese granules was studied. Optical emission spectroscopy meth-ods were used for diagnostics of such discharge plasma. The colloidal solution with manganese nanoparticles was produced by this discharge. The biological applications of this colloid were analyzed. The mechanism of metallic nanoparticle action and their transformation at interacting with biological objects were studied in Alternaria alternata culture. Исследовали подводный искровой разряд между гранулами марганца. Для диагностики такой разрядной плазмы использовали методы оптической эмиссионной спектроскопии. Этот разряд использовался для приготовления коллоидного раствора с наночастицами марганца. Проанализированы биологические применения такого коллоида. Механизм воздействия наночастиц металла и их трансформация при взаимодействии с биологическими объектами изучались на культуре Alternaria alternata. Досліджували підводний іскровий розряд між гранулами марганцю. Для діагностики такої розрядної плазми використовували методи оптичної емісійної спектроскопії. Цей розряд використовували для приготування колоїдного розчину з наночастинками марганцю. Проаналізовані біологічні застосування цього колоїду. Механізм дії наночастинок металу та їх трансформація при взаємодії з біологічними об'єктами вивчалися на культурі Alternaria alternata. 2015 Article Enrichment of colloidal solutions by nanoparticles in underwater spark discharge / K. Lopat’ko, Y. Aftandiliants, A. Veklich, V. Boretskij, N. Taran, L. Batsmanova, V. Trach, T. Tugai // Вопросы атомной науки и техники. — 2015. — № 1. — С. 267-270. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 52.70.-m, 81.07.Bc, 87.85.Rs https://nasplib.isofts.kiev.ua/handle/123456789/82232 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
| spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Lopat’ko, K. Aftandiliants, Y. Veklich, A. Boretskij, V. Taran, N. Batsmanova, L. Trach, V. Tugai, T. Enrichment of colloidal solutions by nanoparticles in underwater spark discharge Вопросы атомной науки и техники |
| description |
The underwater spark discharge between manganese granules was studied. Optical emission spectroscopy meth-ods were used for diagnostics of such discharge plasma. The colloidal solution with manganese nanoparticles was produced by this discharge. The biological applications of this colloid were analyzed. The mechanism of metallic nanoparticle action and their transformation at interacting with biological objects were studied in Alternaria alternata culture. |
| format |
Article |
| author |
Lopat’ko, K. Aftandiliants, Y. Veklich, A. Boretskij, V. Taran, N. Batsmanova, L. Trach, V. Tugai, T. |
| author_facet |
Lopat’ko, K. Aftandiliants, Y. Veklich, A. Boretskij, V. Taran, N. Batsmanova, L. Trach, V. Tugai, T. |
| author_sort |
Lopat’ko, K. |
| title |
Enrichment of colloidal solutions by nanoparticles in underwater spark discharge |
| title_short |
Enrichment of colloidal solutions by nanoparticles in underwater spark discharge |
| title_full |
Enrichment of colloidal solutions by nanoparticles in underwater spark discharge |
| title_fullStr |
Enrichment of colloidal solutions by nanoparticles in underwater spark discharge |
| title_full_unstemmed |
Enrichment of colloidal solutions by nanoparticles in underwater spark discharge |
| title_sort |
enrichment of colloidal solutions by nanoparticles in underwater spark discharge |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2015 |
| topic_facet |
Низкотемпературная плазма и плазменные технологии |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/82232 |
| citation_txt |
Enrichment of colloidal solutions by nanoparticles in underwater spark discharge / K. Lopat’ko, Y. Aftandiliants, A. Veklich, V. Boretskij, N. Taran, L. Batsmanova, V. Trach, T. Tugai // Вопросы атомной науки и техники. — 2015. — № 1. — С. 267-270. — Бібліогр.: 10 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT lopatkok enrichmentofcolloidalsolutionsbynanoparticlesinunderwatersparkdischarge AT aftandiliantsy enrichmentofcolloidalsolutionsbynanoparticlesinunderwatersparkdischarge AT veklicha enrichmentofcolloidalsolutionsbynanoparticlesinunderwatersparkdischarge AT boretskijv enrichmentofcolloidalsolutionsbynanoparticlesinunderwatersparkdischarge AT tarann enrichmentofcolloidalsolutionsbynanoparticlesinunderwatersparkdischarge AT batsmanoval enrichmentofcolloidalsolutionsbynanoparticlesinunderwatersparkdischarge AT trachv enrichmentofcolloidalsolutionsbynanoparticlesinunderwatersparkdischarge AT tugait enrichmentofcolloidalsolutionsbynanoparticlesinunderwatersparkdischarge AT lopatkok obogaŝeniekolloidnyhrastvorovnanočasticamivpodvodnomiskrovomrazrâde AT aftandiliantsy obogaŝeniekolloidnyhrastvorovnanočasticamivpodvodnomiskrovomrazrâde AT veklicha obogaŝeniekolloidnyhrastvorovnanočasticamivpodvodnomiskrovomrazrâde AT boretskijv obogaŝeniekolloidnyhrastvorovnanočasticamivpodvodnomiskrovomrazrâde AT tarann obogaŝeniekolloidnyhrastvorovnanočasticamivpodvodnomiskrovomrazrâde AT batsmanoval obogaŝeniekolloidnyhrastvorovnanočasticamivpodvodnomiskrovomrazrâde AT trachv obogaŝeniekolloidnyhrastvorovnanočasticamivpodvodnomiskrovomrazrâde AT tugait obogaŝeniekolloidnyhrastvorovnanočasticamivpodvodnomiskrovomrazrâde AT lopatkok zbagačennâkoloídnihrozčinívnanočastinkamivpídvodnomuískrovomurozrâdí AT aftandiliantsy zbagačennâkoloídnihrozčinívnanočastinkamivpídvodnomuískrovomurozrâdí AT veklicha zbagačennâkoloídnihrozčinívnanočastinkamivpídvodnomuískrovomurozrâdí AT boretskijv zbagačennâkoloídnihrozčinívnanočastinkamivpídvodnomuískrovomurozrâdí AT tarann zbagačennâkoloídnihrozčinívnanočastinkamivpídvodnomuískrovomurozrâdí AT batsmanoval zbagačennâkoloídnihrozčinívnanočastinkamivpídvodnomuískrovomurozrâdí AT trachv zbagačennâkoloídnihrozčinívnanočastinkamivpídvodnomuískrovomurozrâdí AT tugait zbagačennâkoloídnihrozčinívnanočastinkamivpídvodnomuískrovomurozrâdí |
| first_indexed |
2025-11-30T15:14:19Z |
| last_indexed |
2025-11-30T15:14:19Z |
| _version_ |
1850228775752564736 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2015. №1(95)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2015, № 1. Series: Plasma Physics (21), p. 267-270. 267
ENRICHMENT OF COLLOIDAL SOLUTIONS BY NANOPARTICLES IN
UNDERWATER SPARK DISCHARGE
K. Lopat’ko
1
, Y. Aftandiliants
1
, A. Veklich
2
, V. Boretskij
2
, N. Taran
2
, L. Batsmanova
2
,
V. Trach
3
, T. Tugai
4
1
National University of Life and Environmental Sciences of the Ukraine, Kyiv, Ukraine;
2
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine;
3
Institute of Physiology and Plant Genetics of the NASU, Kyiv, Ukraine;
4
Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine
E-mail: boretskij.v@gmail.com
The underwater spark discharge between manganese granules was studied. Optical emission spectroscopy meth-
ods were used for diagnostics of such discharge plasma. The colloidal solution with manganese nanoparticles was
produced by this discharge. The biological applications of this colloid were analyzed. The mechanism of metallic
nanoparticle action and their transformation at interacting with biological objects were studied in Alternaria alternata
culture.
PACS: 52.70.-m, 81.07.Bc, 87.85.Rs
INTRODUCTION
There is a steady growth of nanomaterials applications in
various fields of human life (industry, medicine, biology,
etc.). Different kind of nanomaterials production methods
were developed. Common problem for all these methods is
obtaining of nanomaterials with predetermined and stable
characteristics. Certainly, nanomaterials cannot be in an iso-
lated state for a long time and finally they are consolidate.
One of the most promising methods for
nanomaterials producing is spark erosion treatment of
the material in water and formation of colloidal solu-
tions with nanoparticles. A combination of intense heat
and force action on the material during ultra-short time
intervals in spark discharge gives possibility to obtain
nanoparticles with non-equilibrium structure, increased
level of free energy and spatial sizes of 20…100 nm.
Previous studies [1-9] of the underwater spark dis-
charge showed the formation of metal nanoparticles in
the form of colloidal solution. A physical model of na-
noparticles formation at the discharge periphery was
suggested [4, 6, 8].
Optical emission spectroscopy of the discharge be-
tween copper and silver granules was used to estimate
the excitation temperatures in plasma [1, 2, 4-8]. Ob-
tained colloidal solutions with metal nanoparticles were
tested in different applications. Colloidal solution with
aluminum nanoparticles showed good properties for
metallurgy usage as effective deoxidant, increasing of
structure dispersion, globulization and homogeneity [9].
Colloids, contained copper and silver, showed good
properties for biological applications, namely for activa-
tion of antioxidant protective mechanisms of plants [1,
3]. These colloidal solutions showed also good antifun-
gal and antibacterial features [5, 6, 9].
This paper is a continuation of such kind investiga-
tions with the aim to study the peculiarities of the un-
derwater spark discharge between manganese granules
and biological applications of the colloidal solutions
with manganese nanoparticles which are produced by
this discharge.
1. EXPERIMENTAL SETUP
Specially developed pulse power source was used to in-
itiate a discharge between manganese granules immersed
into the deionized water. Implementation of the low-
voltage spark discharges was carried out on the experi-
mental setup, which is shown in Fig. 1. It consists of a
pulse generator 1, control unit 2, measuring and auxilia-
ry devices: oscilloscope 3, Rogowsky coil 4, voltage
divider 5; and discharge chamber 6.
Fig. 1. Experimental arrangement
General view of the discharge is shown in Fig. 2.
The voltage, applied to electrodes, caused a current flow
along the chain of closely arranged granules in the sto-
chastic switching mode. Investigation of the influence
of process variables on dispersion and morphology of
the products of metal granules erosion during the for-
mation of local spark discharges was performed by var-
ying of electrical parameters of the discharge circuit.
Typical values of voltage were of 40…200 V, current
was up to 150 A and pulse frequency was in the range
268 ISSN 1562-6016. ВАНТ. 2015. №1(95)
of 0.2…2 kHz. As a result of a spark-erosion process,
the formation of colloidal fraction was observed. Its
morphology markedly differs from a micro fraction and
is a common for metallurgical processes at low pres-
sure, namely, the formation of a solid phase resulting
from evaporation followed by condensation.
Fig. 2. General view of the discharge
2. SPECTROSCOPY INVESTIGATION
Optical emission spectroscopy methods were used in
plasma diagnostics of underwater electric spark dis-
charge between manganese granules.
Plasma emission of the spark discharge was registered
by the diffraction spectrometer (600 gr/mm) coupled with
CCD camera (3008x2000 pixels) [10]. Tungsten ribbon
lamp as an etalon radiation source was used to define
spectral sensitivity of the experimental apparatus.
The emission spectrum of the discharge between
manganese granules is shown in Fig. 3. It consist mainly
from Mn I spectral lines. Some merged Mn II spectral
lines were also observed. In general, this manganese
emission spectrum is very complicated due to the sig-
nificant overlapping of atom and ions spectral lines.
Obviously, special technique must be developed at
the next steps of investigation to provide diagnostics of
such plasma. Nevertheless, the presence of ion manga-
nese lines in the spectrum allow to affirm that plasma
temperature is high enough to excite the electron energy
levels up to 12 eV.
3. BIOLOGICAL APPLICATION
The influence of colloidal solutions with metal na-
noparticles was investigated on Alternaria alternata cul-
ture. Colloids with manganese particles produced by
underwater spark discharge were used in this study.
Fig. 4,a shows TEM image of manganese particles,
which was registered by JEOL JEM-2100F microscope.
Malvern Zetasizer Nano was also used to obtain size
distribution of manganese particles (see Fig. 4,b). Com-
bination of these techniques shows that average size
distribution of manganese particles is in the range from
30 to 50 nm (see Fig. 4).
The colloidal solution with 10 mg/l concentration of
manganese solid phase was prepared for further biologi-
cal experiments. This solution was added into the sus-
pension, which contained Alternaria alternata culture.
The influence of colloidal solution with manganese na-
noparticles on micromycetes was studied after 1 and
19 hours exposition. After that, micromycetes were re-
moved from the suspension, fixed and cut by Ultratome.
Obtained cut samples were studied by TEM microscope
(Fig. 5).
Fig. 5,a shows incorporation of metal nanoparticles into
the membrane of a unicellular organism. Moreover,
penetration of the nanoparticles through the membrane and
their further dissolvent in the cellular volume were also
observed.
Such behavior of biogenic manganese nanoparticles
allow assuming that they are involved in general
metabolism of a unicellular organism. Increasing of the
exposure time up to 19 hours leads to accumulation of the
nanoparticles on the membrane surface and increasing of
the particles amount entered into the cell (see Fig. 5,b).
It must be mentioned that average size of the
nanoparticles, entered into the cell, decreases with
increasing of the exposure time. Namely, the manganese
particles are dissolving.
Dissolution of the nanoparticles in the cell and the
extracellular space occurs primarily for such metals,
which have a biological functionality. Moreover, such
nanoparticles must have corresponding structural and
phase composition and morphology. It also explains the
absence of materials degradation that have no
physiological values for biological objects, or such
materials have biologically unacceptable form (graphite
nanotubes, natural and synthetic polymers, complex
minerals, chromium-nickel steel etc.). Therefore, when
such materials enters the body, they cause chronic
toxicity and pathology of the target organs.
Electron diffraction of the manganese nanoparticles
was studied before (Fig. 6,a) and after 19 hours of
interaction with suspension, which contained Alternaria
alternata culture (see Fig. 6,b). One can conclude by
comparing these figures that interaction with
micromycetes leads to the destruction of polycrystalline
structure of the manganese nanoparticles. After
significant exposure time they became amorphous. This
phenomenon demonstrates the biological transformation
of the manganese nanoparticles and may be as one of
the criteria of theirs biological functionality.
Thus, the biological functionality of matters is a
complex concept, which is based on their biological or
physiological availability and includes properties such
as permeability, solubility and biological
transformation, the ability to activate physiological
processes and transportation of substances.
The absence of solubility and transport processes
involved in causing their accumulation and chronic
toxicity. However, soluble forms with high rate of
excretion and small concentrations have exceptionally
transit functionality, but at higher doses, these
substances can cause acute toxicity.
Metal nanoparticles, provided their gradual
dissolution have a prolonged effect and can therefore be
considered as an alternative to salt forms of the mineral
nutrition of organisms. Therefore, the evaluation of their
biological effects can be carried out only taking into
account the methods of nanoparticle production, theirs
morphological parameters as well as structure and phase
composition.
ISSN 1562-6016. ВАНТ. 2015. №1(95) 269
450 500 550 600 650
0
2
4
6
8
10
M
n
I
4
9
6
.6
M
n
I
4
7
8
.3
M
n
I
4
7
5
.4
,
4
7
6
.2
,
4
7
6
.6
M
n
I
4
7
2
.7
M
n
I
4
7
0
.0
,
4
7
1
.0
M
n
I
4
6
2
.7
M
n
I
4
6
0
.5
M
n
I
4
4
9
.9
,
4
5
0
.2
M
n
I
4
4
5
.2
-4
4
7
.3
M
n
I
4
4
3
.6
M
n
I
4
3
7
.5
,
4
3
8
.2
M
n
I
4
4
1
.5
M
n
I
4
3
7
.5
,
4
3
8
.2
M
n
I
4
2
8
.1
,
4
2
8
.4
M
n
I
4
2
3
.5
,
4
2
4
.0
M
n
I
4
2
3
.5
,
4
2
4
.0
I, a.u.
nm
M
n
I
4
2
3
.5
,
4
2
4
.0
M
n
I
4
2
5
.8
,
4
2
6
.6
M
n
I
4
8
2
.4
M
n
I
5
0
7
.5
M
n
I
5
1
1
.8
M
n
I
5
1
5
.1
M
n
I
5
1
9
.7
M
n
I
5
2
5
.5
M
n
I
5
3
4
.1
M
n
I
5
3
7
.8
M
n
I
I
5
2
9
.4
-5
3
3
.2
M
n
I
5
3
9
.5
,
5
4
0
.0
M
n
I
5
4
1
.4
,
5
4
2
.0
M
n
I
5
4
3
.3
M
n
I
5
4
7
.1
M
n
I
5
5
0
.6
,
5
5
1
.7
M
n
I
5
5
7
.3
,
5
5
7
.4
M
n
I
6
0
1
.4
,
6
0
1
.7
,
6
0
2
.2
M
n
I
I
6
1
2
.6
-6
1
3
.1
Fig. 3. Emission spectrum of microdischarge in water between manganese granules
Fig. 4. TEM image of the manganese nanoparticles (a)
and their size distribution (b) in a colloidal solution
TEM × 50000
Fig. 5. Transition of manganese nanoparticles through
the membrane and their dissolution in the unicellular
organism (Alternaria alternate): a exposure is 1 hour;
b exposure is 19 hour
b
a
b
200 nm
a
270 ISSN 1562-6016. ВАНТ. 2015. №1(95)
Fig. 6. Electron diffraction of primary (pilot)
manganese colloidal particles (a) and particles after
exposure during 19 hours (b) in solution of
micromycetes culture
CONCLUSIONS
The underwater spark discharge between manganese
granules was studied. The emission spectrum of this
discharge consists of the Mn I and some Mn II spectral
lines with upper electron levels up to 12 eV.
Investigations by JEOL JEM-2100F microscope and
Malvern Zetasizer Nano showed that average size dis-
tribution of manganese particles is in the range from 30
to 50 nm.
TEM images of micromycetes cuts showed
incorporation of metal nanoparticles into the membrane.
The dissolution of the manganese nanoparticles, entered
into the cell, was also observed. Electron diffraction
showed that interaction with micromycetes leads to the
destruction of polycrystalline structure of the
manganese nanoparticles. After significant exposure
time they became amorphous.
REFERENCES
1. A. Veklich, K. Lopatko, Y. Aftandilyants, et al. Na-
noparticle generation by plasma-erosion discharge in
liquid environment // VII Int. Conf. Plasma Phys. and
Plasma Tech. Minsk, Belarus. 2012 ,v. II, p. 495-498.
2. K. Lopatko, M. Melnichuk, Y. Aftandilyants, et al. Me-
tallic nanoparticles in plasma-erosion electrical discharges
in liquid mediums. I. Optical emission spectroscopy // VIII
Int. conf. "Electronics and Applied Physics". Kyiv,
Ukraine. 2012, p. 166-167.
3. K. Lopatko, M. Melnichuk, Y. Aftandilyants, et al.
Metallic nanoparticles in plasma-erosion electrical dis-
charges in liquid mediums. II. Energy relaxation // VIII
Int. conf. "Electronics and Applied Physics". Kyiv,
Ukraine. 2012, p. 168-169.
4. K. Lopatko, M. Melnichuk, A. Veklich, et al. The
synthesis of metal nanoparticles in the plasma electric
discharge in water // Bulletin of Taras Shevchenko Na-
tional University of Kyiv. Series Physics and Mathemat-
ics. 2013, № 1, p. 261-258.
5. K. Lopatko, M. Melnichuk, Y. Aftandilyants, et al.
Plasma technologies in modification of textile materials
by colloids of metals // XXth Symposium on Physics of
Switching Arc. Ski Hotel - Nové Město na Moravě,
Czech Republic. 2013, p. 241-244.
6. Y. Cressault, Ph. Teulet, A. Gleizes, et al. Peculiari-
ties of metal nanoparticles generation by underwater
discharges for biological applications // XXXI Interna-
tional Conference on Phenomena in Ionized Gases.
Granada, Spain, 2013.
(http://icpig2013.net/papers/550_1.pdf).
7. Y. Aftandilyants, V. Azharonok, V. Boretskij, et al.
Synthesis of carbon nanostructured colloidal solution by
spark dispersion // IX Int. Conf. “Electronics and Ap-
plied Physics . Kyiv, Ukraine. 2013, p. 120-121.
8. K. Lopatko, M. Melnichuk, Y. Aftandilyants, et al.
Obtaining of metallic nanoparticles by plasma-erosion
electrical discharges in liquid mediums for biological
application // Annals of Warsaw University of Life Sci-
ences – SGGW, Agriculture. 2013, v. 61, p. 105-115.
9. K. Lopatko, Y. Aftandiliants, A. Veklich, et al. Nanopar-
ticles generation by plasma of electrical spark discharge.
Application in biology and metallurgy // High-Tech Plas-
ma Processes. Toulouse, France, 2014, USB flash.
10. A. Veklich, V. Boretskij, A. Ivanisik. Investigations
of electric arc plasma between composite Cu-C elec-
trodes // Problems of Atomic Science and Technology.
Series “Plasma Electronics and New Methods of Acce-
leration”. 2013, v. 86, № 4, p. 204-208.
Article receieved 13.10.2014
ОБОГАЩЕНИЕ КОЛЛОИДНЫХ РАСТВОРОВ НАНОЧАСТИЦАМИ В ПОДВОДНОМ ИСКРОВОМ
РАЗРЯДЕ
К. Лопатько, Е. Афтандилянц, А. Веклич, В. Борецкий, Н. Таран, Л. Бацманова, В. Трач, Т. Тугай
Исследовали подводный искровой разряд между гранулами марганца. Для диагностики такой разрядной
плазмы использовали методы оптической эмиссионной спектроскопии. Этот разряд использовался для при-
готовления коллоидного раствора с наночастицами марганца. Проанализированы биологические примене-
ния такого коллоида. Механизм воздействия наночастиц металла и их трансформация при взаимодействии с
биологическими объектами изучались на культуре Alternaria alternata.
ЗБАГАЧЕННЯ КОЛОЇДНИХ РОЗЧИНІВ НАНОЧАСТИНКАМИ В ПІДВОДНОМУ ІСКРОВОМУ
РОЗРЯДІ
К. Лопатько, Є. Афтанділянц, А. Веклич, В. Борецький, М. Таран, Л. Бацманова, В. Трач, Т. Тугай
Досліджували підводний іскровий розряд між гранулами марганцю. Для діагностики такої розрядної
плазми використовували методи оптичної емісійної спектроскопії. Цей розряд використовували для приго-
тування колоїдного розчину з наночастинками марганцю. Проаналізовані біологічні застосування цього ко-
лоїду. Механізм дії наночастинок металу та їх трансформація при взаємодії з біологічними об'єктами вивча-
лися на культурі Alternaria alternata.
b a
http://icpig2013.net/papers/550_1.pdf
|