Enrichment of colloidal solutions by nanoparticles in underwater spark discharge

The underwater spark discharge between manganese granules was studied. Optical emission spectroscopy meth-ods were used for diagnostics of such discharge plasma. The colloidal solution with manganese nanoparticles was produced by this discharge. The biological applications of this colloid were analy...

Full description

Saved in:
Bibliographic Details
Date:2015
Main Authors: Lopat’ko, K., Aftandiliants, Y., Veklich, A., Boretskij, V., Taran, N., Batsmanova, L., Trach, V., Tugai, T.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Series:Вопросы атомной науки и техники
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/82232
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Enrichment of colloidal solutions by nanoparticles in underwater spark discharge / K. Lopat’ko, Y. Aftandiliants, A. Veklich, V. Boretskij, N. Taran, L. Batsmanova, V. Trach, T. Tugai // Вопросы атомной науки и техники. — 2015. — № 1. — С. 267-270. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-82232
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-822322025-02-09T20:41:36Z Enrichment of colloidal solutions by nanoparticles in underwater spark discharge Обогащение коллоидных растворов наночастицами в подводном искровом разряде Збагачення колоїдних розчинів наночастинками в підводному іскровому розряді Lopat’ko, K. Aftandiliants, Y. Veklich, A. Boretskij, V. Taran, N. Batsmanova, L. Trach, V. Tugai, T. Низкотемпературная плазма и плазменные технологии The underwater spark discharge between manganese granules was studied. Optical emission spectroscopy meth-ods were used for diagnostics of such discharge plasma. The colloidal solution with manganese nanoparticles was produced by this discharge. The biological applications of this colloid were analyzed. The mechanism of metallic nanoparticle action and their transformation at interacting with biological objects were studied in Alternaria alternata culture. Исследовали подводный искровой разряд между гранулами марганца. Для диагностики такой разрядной плазмы использовали методы оптической эмиссионной спектроскопии. Этот разряд использовался для приготовления коллоидного раствора с наночастицами марганца. Проанализированы биологические применения такого коллоида. Механизм воздействия наночастиц металла и их трансформация при взаимодействии с биологическими объектами изучались на культуре Alternaria alternata. Досліджували підводний іскровий розряд між гранулами марганцю. Для діагностики такої розрядної плазми використовували методи оптичної емісійної спектроскопії. Цей розряд використовували для приготування колоїдного розчину з наночастинками марганцю. Проаналізовані біологічні застосування цього колоїду. Механізм дії наночастинок металу та їх трансформація при взаємодії з біологічними об'єктами вивчалися на культурі Alternaria alternata. 2015 Article Enrichment of colloidal solutions by nanoparticles in underwater spark discharge / K. Lopat’ko, Y. Aftandiliants, A. Veklich, V. Boretskij, N. Taran, L. Batsmanova, V. Trach, T. Tugai // Вопросы атомной науки и техники. — 2015. — № 1. — С. 267-270. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 52.70.-m, 81.07.Bc, 87.85.Rs https://nasplib.isofts.kiev.ua/handle/123456789/82232 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Lopat’ko, K.
Aftandiliants, Y.
Veklich, A.
Boretskij, V.
Taran, N.
Batsmanova, L.
Trach, V.
Tugai, T.
Enrichment of colloidal solutions by nanoparticles in underwater spark discharge
Вопросы атомной науки и техники
description The underwater spark discharge between manganese granules was studied. Optical emission spectroscopy meth-ods were used for diagnostics of such discharge plasma. The colloidal solution with manganese nanoparticles was produced by this discharge. The biological applications of this colloid were analyzed. The mechanism of metallic nanoparticle action and their transformation at interacting with biological objects were studied in Alternaria alternata culture.
format Article
author Lopat’ko, K.
Aftandiliants, Y.
Veklich, A.
Boretskij, V.
Taran, N.
Batsmanova, L.
Trach, V.
Tugai, T.
author_facet Lopat’ko, K.
Aftandiliants, Y.
Veklich, A.
Boretskij, V.
Taran, N.
Batsmanova, L.
Trach, V.
Tugai, T.
author_sort Lopat’ko, K.
title Enrichment of colloidal solutions by nanoparticles in underwater spark discharge
title_short Enrichment of colloidal solutions by nanoparticles in underwater spark discharge
title_full Enrichment of colloidal solutions by nanoparticles in underwater spark discharge
title_fullStr Enrichment of colloidal solutions by nanoparticles in underwater spark discharge
title_full_unstemmed Enrichment of colloidal solutions by nanoparticles in underwater spark discharge
title_sort enrichment of colloidal solutions by nanoparticles in underwater spark discharge
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Низкотемпературная плазма и плазменные технологии
url https://nasplib.isofts.kiev.ua/handle/123456789/82232
citation_txt Enrichment of colloidal solutions by nanoparticles in underwater spark discharge / K. Lopat’ko, Y. Aftandiliants, A. Veklich, V. Boretskij, N. Taran, L. Batsmanova, V. Trach, T. Tugai // Вопросы атомной науки и техники. — 2015. — № 1. — С. 267-270. — Бібліогр.: 10 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT lopatkok enrichmentofcolloidalsolutionsbynanoparticlesinunderwatersparkdischarge
AT aftandiliantsy enrichmentofcolloidalsolutionsbynanoparticlesinunderwatersparkdischarge
AT veklicha enrichmentofcolloidalsolutionsbynanoparticlesinunderwatersparkdischarge
AT boretskijv enrichmentofcolloidalsolutionsbynanoparticlesinunderwatersparkdischarge
AT tarann enrichmentofcolloidalsolutionsbynanoparticlesinunderwatersparkdischarge
AT batsmanoval enrichmentofcolloidalsolutionsbynanoparticlesinunderwatersparkdischarge
AT trachv enrichmentofcolloidalsolutionsbynanoparticlesinunderwatersparkdischarge
AT tugait enrichmentofcolloidalsolutionsbynanoparticlesinunderwatersparkdischarge
AT lopatkok obogaŝeniekolloidnyhrastvorovnanočasticamivpodvodnomiskrovomrazrâde
AT aftandiliantsy obogaŝeniekolloidnyhrastvorovnanočasticamivpodvodnomiskrovomrazrâde
AT veklicha obogaŝeniekolloidnyhrastvorovnanočasticamivpodvodnomiskrovomrazrâde
AT boretskijv obogaŝeniekolloidnyhrastvorovnanočasticamivpodvodnomiskrovomrazrâde
AT tarann obogaŝeniekolloidnyhrastvorovnanočasticamivpodvodnomiskrovomrazrâde
AT batsmanoval obogaŝeniekolloidnyhrastvorovnanočasticamivpodvodnomiskrovomrazrâde
AT trachv obogaŝeniekolloidnyhrastvorovnanočasticamivpodvodnomiskrovomrazrâde
AT tugait obogaŝeniekolloidnyhrastvorovnanočasticamivpodvodnomiskrovomrazrâde
AT lopatkok zbagačennâkoloídnihrozčinívnanočastinkamivpídvodnomuískrovomurozrâdí
AT aftandiliantsy zbagačennâkoloídnihrozčinívnanočastinkamivpídvodnomuískrovomurozrâdí
AT veklicha zbagačennâkoloídnihrozčinívnanočastinkamivpídvodnomuískrovomurozrâdí
AT boretskijv zbagačennâkoloídnihrozčinívnanočastinkamivpídvodnomuískrovomurozrâdí
AT tarann zbagačennâkoloídnihrozčinívnanočastinkamivpídvodnomuískrovomurozrâdí
AT batsmanoval zbagačennâkoloídnihrozčinívnanočastinkamivpídvodnomuískrovomurozrâdí
AT trachv zbagačennâkoloídnihrozčinívnanočastinkamivpídvodnomuískrovomurozrâdí
AT tugait zbagačennâkoloídnihrozčinívnanočastinkamivpídvodnomuískrovomurozrâdí
first_indexed 2025-11-30T15:14:19Z
last_indexed 2025-11-30T15:14:19Z
_version_ 1850228775752564736
fulltext ISSN 1562-6016. ВАНТ. 2015. №1(95) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2015, № 1. Series: Plasma Physics (21), p. 267-270. 267 ENRICHMENT OF COLLOIDAL SOLUTIONS BY NANOPARTICLES IN UNDERWATER SPARK DISCHARGE K. Lopat’ko 1 , Y. Aftandiliants 1 , A. Veklich 2 , V. Boretskij 2 , N. Taran 2 , L. Batsmanova 2 , V. Trach 3 , T. Tugai 4 1 National University of Life and Environmental Sciences of the Ukraine, Kyiv, Ukraine; 2 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; 3 Institute of Physiology and Plant Genetics of the NASU, Kyiv, Ukraine; 4 Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine E-mail: boretskij.v@gmail.com The underwater spark discharge between manganese granules was studied. Optical emission spectroscopy meth- ods were used for diagnostics of such discharge plasma. The colloidal solution with manganese nanoparticles was produced by this discharge. The biological applications of this colloid were analyzed. The mechanism of metallic nanoparticle action and their transformation at interacting with biological objects were studied in Alternaria alternata culture. PACS: 52.70.-m, 81.07.Bc, 87.85.Rs INTRODUCTION There is a steady growth of nanomaterials applications in various fields of human life (industry, medicine, biology, etc.). Different kind of nanomaterials production methods were developed. Common problem for all these methods is obtaining of nanomaterials with predetermined and stable characteristics. Certainly, nanomaterials cannot be in an iso- lated state for a long time and finally they are consolidate. One of the most promising methods for nanomaterials producing is spark erosion treatment of the material in water and formation of colloidal solu- tions with nanoparticles. A combination of intense heat and force action on the material during ultra-short time intervals in spark discharge gives possibility to obtain nanoparticles with non-equilibrium structure, increased level of free energy and spatial sizes of 20…100 nm. Previous studies [1-9] of the underwater spark dis- charge showed the formation of metal nanoparticles in the form of colloidal solution. A physical model of na- noparticles formation at the discharge periphery was suggested [4, 6, 8]. Optical emission spectroscopy of the discharge be- tween copper and silver granules was used to estimate the excitation temperatures in plasma [1, 2, 4-8]. Ob- tained colloidal solutions with metal nanoparticles were tested in different applications. Colloidal solution with aluminum nanoparticles showed good properties for metallurgy usage as effective deoxidant, increasing of structure dispersion, globulization and homogeneity [9]. Colloids, contained copper and silver, showed good properties for biological applications, namely for activa- tion of antioxidant protective mechanisms of plants [1, 3]. These colloidal solutions showed also good antifun- gal and antibacterial features [5, 6, 9]. This paper is a continuation of such kind investiga- tions with the aim to study the peculiarities of the un- derwater spark discharge between manganese granules and biological applications of the colloidal solutions with manganese nanoparticles which are produced by this discharge. 1. EXPERIMENTAL SETUP Specially developed pulse power source was used to in- itiate a discharge between manganese granules immersed into the deionized water. Implementation of the low- voltage spark discharges was carried out on the experi- mental setup, which is shown in Fig. 1. It consists of a pulse generator 1, control unit 2, measuring and auxilia- ry devices: oscilloscope 3, Rogowsky coil 4, voltage divider 5; and discharge chamber 6. Fig. 1. Experimental arrangement General view of the discharge is shown in Fig. 2. The voltage, applied to electrodes, caused a current flow along the chain of closely arranged granules in the sto- chastic switching mode. Investigation of the influence of process variables on dispersion and morphology of the products of metal granules erosion during the for- mation of local spark discharges was performed by var- ying of electrical parameters of the discharge circuit. Typical values of voltage were of 40…200 V, current was up to 150 A and pulse frequency was in the range 268 ISSN 1562-6016. ВАНТ. 2015. №1(95) of 0.2…2 kHz. As a result of a spark-erosion process, the formation of colloidal fraction was observed. Its morphology markedly differs from a micro fraction and is a common for metallurgical processes at low pres- sure, namely, the formation of a solid phase resulting from evaporation followed by condensation. Fig. 2. General view of the discharge 2. SPECTROSCOPY INVESTIGATION Optical emission spectroscopy methods were used in plasma diagnostics of underwater electric spark dis- charge between manganese granules. Plasma emission of the spark discharge was registered by the diffraction spectrometer (600 gr/mm) coupled with CCD camera (3008x2000 pixels) [10]. Tungsten ribbon lamp as an etalon radiation source was used to define spectral sensitivity of the experimental apparatus. The emission spectrum of the discharge between manganese granules is shown in Fig. 3. It consist mainly from Mn I spectral lines. Some merged Mn II spectral lines were also observed. In general, this manganese emission spectrum is very complicated due to the sig- nificant overlapping of atom and ions spectral lines. Obviously, special technique must be developed at the next steps of investigation to provide diagnostics of such plasma. Nevertheless, the presence of ion manga- nese lines in the spectrum allow to affirm that plasma temperature is high enough to excite the electron energy levels up to 12 eV. 3. BIOLOGICAL APPLICATION The influence of colloidal solutions with metal na- noparticles was investigated on Alternaria alternata cul- ture. Colloids with manganese particles produced by underwater spark discharge were used in this study. Fig. 4,a shows TEM image of manganese particles, which was registered by JEOL JEM-2100F microscope. Malvern Zetasizer Nano was also used to obtain size distribution of manganese particles (see Fig. 4,b). Com- bination of these techniques shows that average size distribution of manganese particles is in the range from 30 to 50 nm (see Fig. 4). The colloidal solution with 10 mg/l concentration of manganese solid phase was prepared for further biologi- cal experiments. This solution was added into the sus- pension, which contained Alternaria alternata culture. The influence of colloidal solution with manganese na- noparticles on micromycetes was studied after 1 and 19 hours exposition. After that, micromycetes were re- moved from the suspension, fixed and cut by Ultratome. Obtained cut samples were studied by TEM microscope (Fig. 5). Fig. 5,a shows incorporation of metal nanoparticles into the membrane of a unicellular organism. Moreover, penetration of the nanoparticles through the membrane and their further dissolvent in the cellular volume were also observed. Such behavior of biogenic manganese nanoparticles allow assuming that they are involved in general metabolism of a unicellular organism. Increasing of the exposure time up to 19 hours leads to accumulation of the nanoparticles on the membrane surface and increasing of the particles amount entered into the cell (see Fig. 5,b). It must be mentioned that average size of the nanoparticles, entered into the cell, decreases with increasing of the exposure time. Namely, the manganese particles are dissolving. Dissolution of the nanoparticles in the cell and the extracellular space occurs primarily for such metals, which have a biological functionality. Moreover, such nanoparticles must have corresponding structural and phase composition and morphology. It also explains the absence of materials degradation that have no physiological values for biological objects, or such materials have biologically unacceptable form (graphite nanotubes, natural and synthetic polymers, complex minerals, chromium-nickel steel etc.). Therefore, when such materials enters the body, they cause chronic toxicity and pathology of the target organs. Electron diffraction of the manganese nanoparticles was studied before (Fig. 6,a) and after 19 hours of interaction with suspension, which contained Alternaria alternata culture (see Fig. 6,b). One can conclude by comparing these figures that interaction with micromycetes leads to the destruction of polycrystalline structure of the manganese nanoparticles. After significant exposure time they became amorphous. This phenomenon demonstrates the biological transformation of the manganese nanoparticles and may be as one of the criteria of theirs biological functionality. Thus, the biological functionality of matters is a complex concept, which is based on their biological or physiological availability and includes properties such as permeability, solubility and biological transformation, the ability to activate physiological processes and transportation of substances. The absence of solubility and transport processes involved in causing their accumulation and chronic toxicity. However, soluble forms with high rate of excretion and small concentrations have exceptionally transit functionality, but at higher doses, these substances can cause acute toxicity. Metal nanoparticles, provided their gradual dissolution have a prolonged effect and can therefore be considered as an alternative to salt forms of the mineral nutrition of organisms. Therefore, the evaluation of their biological effects can be carried out only taking into account the methods of nanoparticle production, theirs morphological parameters as well as structure and phase composition. ISSN 1562-6016. ВАНТ. 2015. №1(95) 269 450 500 550 600 650 0 2 4 6 8 10 M n I 4 9 6 .6 M n I 4 7 8 .3 M n I 4 7 5 .4 , 4 7 6 .2 , 4 7 6 .6 M n I 4 7 2 .7 M n I 4 7 0 .0 , 4 7 1 .0 M n I 4 6 2 .7 M n I 4 6 0 .5 M n I 4 4 9 .9 , 4 5 0 .2 M n I 4 4 5 .2 -4 4 7 .3 M n I 4 4 3 .6 M n I 4 3 7 .5 , 4 3 8 .2 M n I 4 4 1 .5 M n I 4 3 7 .5 , 4 3 8 .2 M n I 4 2 8 .1 , 4 2 8 .4 M n I 4 2 3 .5 , 4 2 4 .0 M n I 4 2 3 .5 , 4 2 4 .0 I, a.u. nm M n I 4 2 3 .5 , 4 2 4 .0 M n I 4 2 5 .8 , 4 2 6 .6 M n I 4 8 2 .4 M n I 5 0 7 .5 M n I 5 1 1 .8 M n I 5 1 5 .1 M n I 5 1 9 .7 M n I 5 2 5 .5 M n I 5 3 4 .1 M n I 5 3 7 .8 M n I I 5 2 9 .4 -5 3 3 .2 M n I 5 3 9 .5 , 5 4 0 .0 M n I 5 4 1 .4 , 5 4 2 .0 M n I 5 4 3 .3 M n I 5 4 7 .1 M n I 5 5 0 .6 , 5 5 1 .7 M n I 5 5 7 .3 , 5 5 7 .4 M n I 6 0 1 .4 , 6 0 1 .7 , 6 0 2 .2 M n I I 6 1 2 .6 -6 1 3 .1 Fig. 3. Emission spectrum of microdischarge in water between manganese granules Fig. 4. TEM image of the manganese nanoparticles (a) and their size distribution (b) in a colloidal solution TEM × 50000 Fig. 5. Transition of manganese nanoparticles through the membrane and their dissolution in the unicellular organism (Alternaria alternate): a exposure is 1 hour; b exposure is 19 hour b a b 200 nm a 270 ISSN 1562-6016. ВАНТ. 2015. №1(95) Fig. 6. Electron diffraction of primary (pilot) manganese colloidal particles (a) and particles after exposure during 19 hours (b) in solution of micromycetes culture CONCLUSIONS The underwater spark discharge between manganese granules was studied. The emission spectrum of this discharge consists of the Mn I and some Mn II spectral lines with upper electron levels up to 12 eV. Investigations by JEOL JEM-2100F microscope and Malvern Zetasizer Nano showed that average size dis- tribution of manganese particles is in the range from 30 to 50 nm. TEM images of micromycetes cuts showed incorporation of metal nanoparticles into the membrane. The dissolution of the manganese nanoparticles, entered into the cell, was also observed. Electron diffraction showed that interaction with micromycetes leads to the destruction of polycrystalline structure of the manganese nanoparticles. After significant exposure time they became amorphous. REFERENCES 1. A. Veklich, K. Lopatko, Y. Aftandilyants, et al. Na- noparticle generation by plasma-erosion discharge in liquid environment // VII Int. Conf. Plasma Phys. and Plasma Tech. Minsk, Belarus. 2012 ,v. II, p. 495-498. 2. K. Lopatko, M. Melnichuk, Y. Aftandilyants, et al. Me- tallic nanoparticles in plasma-erosion electrical discharges in liquid mediums. I. Optical emission spectroscopy // VIII Int. conf. "Electronics and Applied Physics". Kyiv, Ukraine. 2012, p. 166-167. 3. K. Lopatko, M. Melnichuk, Y. Aftandilyants, et al. Metallic nanoparticles in plasma-erosion electrical dis- charges in liquid mediums. II. Energy relaxation // VIII Int. conf. "Electronics and Applied Physics". Kyiv, Ukraine. 2012, p. 168-169. 4. K. Lopatko, M. Melnichuk, A. Veklich, et al. The synthesis of metal nanoparticles in the plasma electric discharge in water // Bulletin of Taras Shevchenko Na- tional University of Kyiv. Series Physics and Mathemat- ics. 2013, № 1, p. 261-258. 5. K. Lopatko, M. Melnichuk, Y. Aftandilyants, et al. Plasma technologies in modification of textile materials by colloids of metals // XXth Symposium on Physics of Switching Arc. Ski Hotel - Nové Město na Moravě, Czech Republic. 2013, p. 241-244. 6. Y. Cressault, Ph. Teulet, A. Gleizes, et al. Peculiari- ties of metal nanoparticles generation by underwater discharges for biological applications // XXXI Interna- tional Conference on Phenomena in Ionized Gases. Granada, Spain, 2013. (http://icpig2013.net/papers/550_1.pdf). 7. Y. Aftandilyants, V. Azharonok, V. Boretskij, et al. Synthesis of carbon nanostructured colloidal solution by spark dispersion // IX Int. Conf. “Electronics and Ap- plied Physics . Kyiv, Ukraine. 2013, p. 120-121. 8. K. Lopatko, M. Melnichuk, Y. Aftandilyants, et al. Obtaining of metallic nanoparticles by plasma-erosion electrical discharges in liquid mediums for biological application // Annals of Warsaw University of Life Sci- ences – SGGW, Agriculture. 2013, v. 61, p. 105-115. 9. K. Lopatko, Y. Aftandiliants, A. Veklich, et al. Nanopar- ticles generation by plasma of electrical spark discharge. Application in biology and metallurgy // High-Tech Plas- ma Processes. Toulouse, France, 2014, USB flash. 10. A. Veklich, V. Boretskij, A. Ivanisik. Investigations of electric arc plasma between composite Cu-C elec- trodes // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Acce- leration”. 2013, v. 86, № 4, p. 204-208. Article receieved 13.10.2014 ОБОГАЩЕНИЕ КОЛЛОИДНЫХ РАСТВОРОВ НАНОЧАСТИЦАМИ В ПОДВОДНОМ ИСКРОВОМ РАЗРЯДЕ К. Лопатько, Е. Афтандилянц, А. Веклич, В. Борецкий, Н. Таран, Л. Бацманова, В. Трач, Т. Тугай Исследовали подводный искровой разряд между гранулами марганца. Для диагностики такой разрядной плазмы использовали методы оптической эмиссионной спектроскопии. Этот разряд использовался для при- готовления коллоидного раствора с наночастицами марганца. Проанализированы биологические примене- ния такого коллоида. Механизм воздействия наночастиц металла и их трансформация при взаимодействии с биологическими объектами изучались на культуре Alternaria alternata. ЗБАГАЧЕННЯ КОЛОЇДНИХ РОЗЧИНІВ НАНОЧАСТИНКАМИ В ПІДВОДНОМУ ІСКРОВОМУ РОЗРЯДІ К. Лопатько, Є. Афтанділянц, А. Веклич, В. Борецький, М. Таран, Л. Бацманова, В. Трач, Т. Тугай Досліджували підводний іскровий розряд між гранулами марганцю. Для діагностики такої розрядної плазми використовували методи оптичної емісійної спектроскопії. Цей розряд використовували для приго- тування колоїдного розчину з наночастинками марганцю. Проаналізовані біологічні застосування цього ко- лоїду. Механізм дії наночастинок металу та їх трансформація при взаємодії з біологічними об'єктами вивча- лися на культурі Alternaria alternata. b a http://icpig2013.net/papers/550_1.pdf