Structural state study of high-purity titanium after severe plastic deformation and cryogenic quasi-hydrostatic extrusion by XRD methods
Nanocrystalline bulk high-purity titanium samples were obtained by combined severe plastic deformation SPD, thermal treatment and quasi-hydrostatic extrusion QHE at liquid nitrogen LNT and room RT temperatures. Texture and microstructural evolution of Ti have been investigated by XRD methods. The ef...
Gespeichert in:
| Datum: | 2015 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/82448 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Structural state study of high-purity titanium after severe plastic deformation and cryogenic quasi-hydrostatic extrusion by XRD methods / E.E. Boklag, І.V. Kolodiy, M.A. Tikhonovsky, I.F. Kislyak, P.А. Khaimovich, A.A. Efimov // Вопросы атомной науки и техники. — 2015. — № 2. — С. 95-99. — Бібліогр.: 23 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-82448 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-824482025-02-09T17:34:40Z Structural state study of high-purity titanium after severe plastic deformation and cryogenic quasi-hydrostatic extrusion by XRD methods Исследование структурного состояния высокочистого титана после интенсивной пластической деформации и криогенной квазигидроэкструзии методами рентгеновской дифракции Дослідження структурного стану високочистого титану після інтенсивної пластичної деформації і криогенної квазігідроекструзії методами рентгенівської дифракції Boklag, E.E. Kolodiy, І.V. Tikhonovsky, M.A. Kislyak, I.F. Khaimovich, P.A. Efimov, A.A. Материалы реакторов на тепловых нейтронах Nanocrystalline bulk high-purity titanium samples were obtained by combined severe plastic deformation SPD, thermal treatment and quasi-hydrostatic extrusion QHE at liquid nitrogen LNT and room RT temperatures. Texture and microstructural evolution of Ti have been investigated by XRD methods. The effect of initial structural state on deformation behavior of Ti after QHE was established. QHE of ultrafine-grained samples leads to structure formation, which parameters are independent on temperature of QHE. Significant differences in QHE process are observed for pre-annealed coarse-grained samples. These differences are related to deformation mechanisms, activated during the QHE process at LNT and RT. Методами комбинированной интенсивной пластической деформации, термообработок и квазигидроэкструзии (КГЭ) при азотной и комнатной температурах получены объемные нанокристаллические образцы высокочистого титана. Исследования текстуры и микроструктурных параметров титана проводились методами рентгеновской дифрактометрии. Установлено влияние исходного структурного состояния образцов на деформационное поведение титана при КГЭ. КГЭ ультрамелкозернистых образцов приводит к формированию структуры, параметры которой практически не зависят от температуры КГЭ. Значительные отличия наблюдаются в случае предварительно отожженных крупнозернистых образцов. Это связано с различными механизмами деформации (скольжением дислокаций и двойникованием), которые активируются в процессе КГЭ при комнатной и азотной температурах. Методами комбінованої інтенсивної пластичної деформації, термообробок та квазігідроекструзії (КГЕ) при азотній та кімнатній температурах отримано нанокристалічні об’ємні зразки високочистого титану. Дослідження текстури та мікроструктури титану проводилися методами рентгенівської дифракції. Встановлено вплив початкового структурного стану зразків на деформаційну поведінку титану при КГЕ. КГЕ ультрадрібнозернистих зразків призводить до формування структури з параметрами, незалежними від температури КГЕ. Значні відмінності спостерігаються у випадку попередньо відпалених крупнозернистих зразків. Це пов’язано з різними механізмами деформації (ковзанням дислокацій та двійнікуванням), що активуються під час КГЕ при кімнатній та азотній температурах. 2015 Article Structural state study of high-purity titanium after severe plastic deformation and cryogenic quasi-hydrostatic extrusion by XRD methods / E.E. Boklag, І.V. Kolodiy, M.A. Tikhonovsky, I.F. Kislyak, P.А. Khaimovich, A.A. Efimov // Вопросы атомной науки и техники. — 2015. — № 2. — С. 95-99. — Бібліогр.: 23 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/82448 621.039:543.442.3 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Материалы реакторов на тепловых нейтронах Материалы реакторов на тепловых нейтронах |
| spellingShingle |
Материалы реакторов на тепловых нейтронах Материалы реакторов на тепловых нейтронах Boklag, E.E. Kolodiy, І.V. Tikhonovsky, M.A. Kislyak, I.F. Khaimovich, P.A. Efimov, A.A. Structural state study of high-purity titanium after severe plastic deformation and cryogenic quasi-hydrostatic extrusion by XRD methods Вопросы атомной науки и техники |
| description |
Nanocrystalline bulk high-purity titanium samples were obtained by combined severe plastic deformation SPD, thermal treatment and quasi-hydrostatic extrusion QHE at liquid nitrogen LNT and room RT temperatures. Texture and microstructural evolution of Ti have been investigated by XRD methods. The effect of initial structural state on deformation behavior of Ti after QHE was established. QHE of ultrafine-grained samples leads to structure formation, which parameters are independent on temperature of QHE. Significant differences in QHE process are observed for pre-annealed coarse-grained samples. These differences are related to deformation mechanisms, activated during the QHE process at LNT and RT. |
| format |
Article |
| author |
Boklag, E.E. Kolodiy, І.V. Tikhonovsky, M.A. Kislyak, I.F. Khaimovich, P.A. Efimov, A.A. |
| author_facet |
Boklag, E.E. Kolodiy, І.V. Tikhonovsky, M.A. Kislyak, I.F. Khaimovich, P.A. Efimov, A.A. |
| author_sort |
Boklag, E.E. |
| title |
Structural state study of high-purity titanium after severe plastic deformation and cryogenic quasi-hydrostatic extrusion by XRD methods |
| title_short |
Structural state study of high-purity titanium after severe plastic deformation and cryogenic quasi-hydrostatic extrusion by XRD methods |
| title_full |
Structural state study of high-purity titanium after severe plastic deformation and cryogenic quasi-hydrostatic extrusion by XRD methods |
| title_fullStr |
Structural state study of high-purity titanium after severe plastic deformation and cryogenic quasi-hydrostatic extrusion by XRD methods |
| title_full_unstemmed |
Structural state study of high-purity titanium after severe plastic deformation and cryogenic quasi-hydrostatic extrusion by XRD methods |
| title_sort |
structural state study of high-purity titanium after severe plastic deformation and cryogenic quasi-hydrostatic extrusion by xrd methods |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2015 |
| topic_facet |
Материалы реакторов на тепловых нейтронах |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/82448 |
| citation_txt |
Structural state study of high-purity titanium after severe plastic deformation and cryogenic quasi-hydrostatic extrusion by XRD methods / E.E. Boklag, І.V. Kolodiy, M.A. Tikhonovsky, I.F. Kislyak, P.А. Khaimovich, A.A. Efimov // Вопросы атомной науки и техники. — 2015. — № 2. — С. 95-99. — Бібліогр.: 23 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT boklagee structuralstatestudyofhighpuritytitaniumaftersevereplasticdeformationandcryogenicquasihydrostaticextrusionbyxrdmethods AT kolodiyív structuralstatestudyofhighpuritytitaniumaftersevereplasticdeformationandcryogenicquasihydrostaticextrusionbyxrdmethods AT tikhonovskyma structuralstatestudyofhighpuritytitaniumaftersevereplasticdeformationandcryogenicquasihydrostaticextrusionbyxrdmethods AT kislyakif structuralstatestudyofhighpuritytitaniumaftersevereplasticdeformationandcryogenicquasihydrostaticextrusionbyxrdmethods AT khaimovichpa structuralstatestudyofhighpuritytitaniumaftersevereplasticdeformationandcryogenicquasihydrostaticextrusionbyxrdmethods AT efimovaa structuralstatestudyofhighpuritytitaniumaftersevereplasticdeformationandcryogenicquasihydrostaticextrusionbyxrdmethods AT boklagee issledovaniestrukturnogosostoâniâvysokočistogotitanaposleintensivnojplastičeskojdeformaciiikriogennojkvazigidroékstruziimetodamirentgenovskojdifrakcii AT kolodiyív issledovaniestrukturnogosostoâniâvysokočistogotitanaposleintensivnojplastičeskojdeformaciiikriogennojkvazigidroékstruziimetodamirentgenovskojdifrakcii AT tikhonovskyma issledovaniestrukturnogosostoâniâvysokočistogotitanaposleintensivnojplastičeskojdeformaciiikriogennojkvazigidroékstruziimetodamirentgenovskojdifrakcii AT kislyakif issledovaniestrukturnogosostoâniâvysokočistogotitanaposleintensivnojplastičeskojdeformaciiikriogennojkvazigidroékstruziimetodamirentgenovskojdifrakcii AT khaimovichpa issledovaniestrukturnogosostoâniâvysokočistogotitanaposleintensivnojplastičeskojdeformaciiikriogennojkvazigidroékstruziimetodamirentgenovskojdifrakcii AT efimovaa issledovaniestrukturnogosostoâniâvysokočistogotitanaposleintensivnojplastičeskojdeformaciiikriogennojkvazigidroékstruziimetodamirentgenovskojdifrakcii AT boklagee doslídžennâstrukturnogostanuvisokočistogotitanupíslâíntensivnoíplastičnoídeformacíííkriogennoíkvazígídroekstruzíímetodamirentgenívsʹkoídifrakcíí AT kolodiyív doslídžennâstrukturnogostanuvisokočistogotitanupíslâíntensivnoíplastičnoídeformacíííkriogennoíkvazígídroekstruzíímetodamirentgenívsʹkoídifrakcíí AT tikhonovskyma doslídžennâstrukturnogostanuvisokočistogotitanupíslâíntensivnoíplastičnoídeformacíííkriogennoíkvazígídroekstruzíímetodamirentgenívsʹkoídifrakcíí AT kislyakif doslídžennâstrukturnogostanuvisokočistogotitanupíslâíntensivnoíplastičnoídeformacíííkriogennoíkvazígídroekstruzíímetodamirentgenívsʹkoídifrakcíí AT khaimovichpa doslídžennâstrukturnogostanuvisokočistogotitanupíslâíntensivnoíplastičnoídeformacíííkriogennoíkvazígídroekstruzíímetodamirentgenívsʹkoídifrakcíí AT efimovaa doslídžennâstrukturnogostanuvisokočistogotitanupíslâíntensivnoíplastičnoídeformacíííkriogennoíkvazígídroekstruzíímetodamirentgenívsʹkoídifrakcíí |
| first_indexed |
2025-11-28T19:21:40Z |
| last_indexed |
2025-11-28T19:21:40Z |
| _version_ |
1850063149565214720 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2015. №2(96) 95
UDC 621.039:543.442.3
STRUCTURAL STATE STUDY OF HIGH-PURITY TITANIUM AFTER
SEVERE PLASTIC DEFORMATION AND CRYOGENIC
QUASI-HYDROSTATIC EXTRUSION BY XRD METHODS
E.E. Boklag, І.V. Kolodiy, M.A. Tikhonovsky, I.F. Kislyak, P.А. Khaimovich, A.A. Efimov
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: giao@ukr.net
Nanocrystalline bulk high-purity titanium samples were obtained by combined severe plastic deformation SPD,
thermal treatment and quasi-hydrostatic extrusion QHE at liquid nitrogen LNT and room RT temperatures. Texture
and microstructural evolution of Ti have been investigated by XRD methods. The effect of initial structural state on
deformation behavior of Ti after QHE was established. QHE of ultrafine-grained samples leads to structure
formation, which parameters are independent on temperature of QHE. Significant differences in QHE process are
observed for pre-annealed coarse-grained samples. These differences are related to deformation mechanisms,
activated during the QHE process at LNT and RT.
1. INTRODUCTION
Titanium and titanium-based alloys are widely used
materials for medical implants manufacturing due to its
excellent biocompatibility, corrosion resistance and low
ion-formation tendency in aqueous environment [1, 2].
Until recently, alloy materials were preferred (for
example, Ti-6Al-4V), because of its higher mechanical
properties in comparison with pure titanium. But the
development level of the modern medicine has
considerably higher material requirements. In spite of
high biocompatibility and strength, titanium-based
alloys usually contain toxic elements, which can
provoke allergic reactions during implant healing
process. For this reason researchers are taking an
interest in pure titanium. Modern methods of severe
plastic deformation (SPD) allow to obtain
nanostructured and ultrafine-grained UFG titanium
(commercially pure and high-purity), which has unique
physical and mechanical properties. For this purpose
different SPD methods were realized for commercially
pure titanium, such as high pressure torsion (HPT) [3],
equal channel angular extrusion (ECAE) [4–7], uniaxial
compression [8], large-strain machining [9], cryogenic
rolling [10]. Large degrees of true strain and heightened
temperatures are usually required for production of
UFG and nanocrystalline materials by afore-cited
methods. But, at the same time, dynamical recovery
effect appears. Besides, the combination of SPD
methods results in better mechanical behavior of Ti
samples [11]. Therefore, the main goal of this work was
to study the structural state of high-purity titanium after
SPD (compression-extrusion + wire drawing), thermal
treatment and following quasi-hydrostatic extrusion at
liquid nitrogen and room temperatures (QHE77K and
QHE300K series, respectively).
2. MATERIALS AND METHODS
Iodide purity titanium after double electron-beam
melting at a pressure (P = 1.3∙10
-4
Pa) was taken as an
initial material. Combined severe plastic deformation
was carried out in a few stages. At the first step
preliminary compression-extrusion of the initial ingot
was performed. The true strain aggregated a value of
e = 3.54, after the deformation final billet was Ø10mm.
At the second stage, the extruded rod was drawn to
diameter 5 mm at room temperature (total true strain
after wire drawing was e = 4.93). The foregoing SPD
methods are described in more detail in the article [12].
After this, the obtained bar was cut into the set of
specimens. Some of them were annealed (1.3∙10
-1
Pa) at
temperatures 150, 250, 300, 350, 450, 550 ºC for 1 h to
study an effect of the initial structural state on
deformation behavior of Ti. Then samples after SPD
and annealing were extruded by quasi-hydrostatic
extrusion at liquid nitrogen LNT and room temperature
RT. True strain after quasi-hydrostatic extrusion was
e ≈ 0.86. Quasi-hydrostatic extrusion method was
developed in NSC KIPT and described by authors in the
articles [13, 14], and its usage, applied to high-purity
titanium deformation, in the article [12].
Texture and structure parameters of samples were
studied by XRD methods. Integral intensity, peak
position, line profile shape and integral breadth were
analyzed. X-ray diffraction patterns were collected in
Cu-Kα radiation with DRON-4-07 diffractometer,
equipped with scintillation detector and nickel filter.
Texture analysis of the specimens was carried out by
Rietveld refinement. Degree of preferred orientation
determination (percentage of crystal grains, oriented
with predetermined crystallographic plane {hkl} normal
to deformation direction) was performed by integral
intensity analysis combined with March-Dollase
approach [15]:
M
i
iihkl r
rP
1
2/322 )sin1cos( , (1)
where Phkl – normalization factor for (hkl) peak intensity
correction; M – multiplicity factor (hkl) plane; φ – angle
between the reference direction and the normal of the
individual lattice plane; r – refined parameter (part of
grains, randomly oriented in the sample).
Microstructural effect study was performed by
integral breadth analysis method. Separated values of
coherent-scattering domains (CSD) size and
microstrains were obtained using Williamson-Hall plot.
The main operational formula of this method is:
,
cos
tg
D
(2)
mailto:giao@ukr.net
96 ISSN 1562-6016. ВАНТ. 2015. №2(96)
β – physical peak broadening (experimentally observed
broadening corrected for instrumental broadening); λ –
radiation wavelength; D – crystallite size (volume
weighted); η – residual mean square value of
microstrains; θ – diffraction angle. Coarse-grained
silicon powder (grain size ~ 30 μm) was used as an
instrumental-standard specimen.
3. RESULTS
3.1. SPD BY COMPRESSION-EXTRUSION –
WIRE DRAWING WITH FOLLOWING
ANNEALING
After the SPD by compression-extrusion and wire-
drawing at room temperature the sample’s structure has
practically equiaxed crystallites (CSD size is 70.4 nm
along the bar axis and 92.8 nm in a cross-section, value
of microstrains is 0.4%). Analysing intensity
distribution of the diffraction lines in the sample, it can
be concluded an [10.0] axial texture presence in non-
annealed deformed sample (e.g. grains are oriented with
[10.0] crystallographic directions along rod axis). This
is typical crystallographic texture for titanium at
uniaxial deformation.
During the annealing temperature increasing it is
observed crystallite size exponential growth and
microstrains reducing depending on temperature
(Figs. 1, 2; Table 1). It should be noted, that
microstrains decrease weakly on annealing, and just at
T = 450 ºC stress relaxation occurs in specimens. More
interesting results are observed for CSD size. The
crystallite size increases weakly along the bar axis and
just at T = 550 ºC it reaches values comparable to
standard’s one.
Fig. 1. CSD size dependence on annealing temperature
in the samples after SPD
More intensive growth of crystallite size is observed
in a cross-section of the bar depending on annealing
temperature and at T = 350 ºC CSD size already reaches
standard’s level. Thus, crystallites have oblong shape,
oriented normally to bar axis, up to 550 ºC. It should be
noted, that annealing at 150 ºC leads to slight CSD size
decreasing in comparison with non-annealed deformed
sample. This effect may be caused by anisotropy of
coefficients of thermal expansion.
Peak (10.0) relative intensities are significantly
higher in samples, annealed at temperatures from 150 to
350 ºC, then in non-annealed deformed sample. This
indicates that the annealing samples are more textured
than non-annealed deformed sample. At higher
annealing temperatures (450, 550 ºC) texture
randomization occurs and, at the same time, axial
texture component [11.0] appears (typical annealing
texture for titanium).
Fig. 2. Microstrains dependence on annealing
temperature in the samples after SPD
Table 1
Dependence of Ti sub-structural parameters on
annealing temperature after the SPD
Tanneal,
°С
Cross-section
Longitudinal
section
D, nm <ε> D, nm <ε>
20 70.4 3.03·10
-3
92.8 4.96·10
-3
150 91.7 4.59·10
-3
250 77.2 3.25·10
-3
202.1 3.77·10
-3
300 86.6 3.15·10
-3
442.9 2.81·10
-3
350 67.9 3.84·10
-3
* *
450 190.3 1.7·10
-4
* *
550 * * * *
*Values of microstructural parameters are
comparable to the instrumental-standard specimen’s
ones.
3.2. QUASI-HYDROSTATIC EXTRUSION AT
ROOM AND NITROGEN TEMPERATURES
After the quasi-hydrostatic extrusion at LNT and RT
practically the same values of sub-structural parameters
are observed in deformed non-annealed samples
(Table 2, 20 °C). Thus CSD size is equal to D ≈ 62 nm,
and the value of microstrains is a bit higher
(<ε> = 3.83∙10
-3
) in sample extruded at LNT as
compared with extruded at RT one (<ε> = 3.65∙10
-3
).
Pre-annealing temperature of SPD titanium has a
significant effect on sub-structural parameters of quasi-
hydrostatic extruded samples. For the pre-annealed
samples after the QHE common tendency to
microstrains decreasing is observed at annealing
temperature decrease (Fig. 3, Table 2). Whereas the
similar values of microstrains were obtained for both
specimens’ series (QHE77K and QHE300K).
Concerning to CSD, exponential growth of crystallite
size is observed in specimens, quasi-hydroextruded at
room temperature (Fig. 4, 300 K series), with pre-
annealing temperature increasing (crystallite size
increased up to 136.2 nm at T = 550 ºC).
ISSN 1562-6016. ВАНТ. 2015. №2(96) 97
Fig. 3. Microstrains dependence on annealing
temperature in the samples after QHE
Fig. 4. CSD size dependence on annealing temperature
in the samples after QHE
Table 2
Dependence of substructural parameters on pre-
annealing temperature after the QHE
Tanneal,
ºC
TQHE
LNT RT
D, nm <ε> D, nm <ε>
20 62.4 3.83·10
-3
62.0 3.65·10
-3
350 74.7 3.48·10
-3
82.9 3.53·10
-3
450 74.2 2.95·10
-3
88.8 3.08·10
-3
550 54.2 2.98·10
-3
136.2 2.85·10
-3
Another situation is observed in the samples,
deformed at nitrogen temperature (see Fig. 4, 77 K). In
this case two pre-annealing temperature regions can be
marked out, in which different tendencies of crystallite
size changes are observed. Inside a temperature region
up to 350 ºC crystallite size grows up weakly with
annealing temperature increasing (up to value
D = 74.7 nm at T = 350 ºC). In this region difference of
CSD size is slight for samples, quasi hydroextruded at
nitrogen and near-ambient temperatures, but it is visible
that at T = 350 ºC crystallites are bit smaller in
QHE77K samples than in QHE300K ones. This
deference becomes cardinal at higher pre-annealing
temperatures; whereas the reverse trend is observed in
samples extruded at nitrogen temperature – growth of
pre-annealing temperature causes crystallite size
decreasing (see Fig. 4, Table 2). So, minimal CSD size
is obtained at T = 550 ºC (D = 54.2 nm), which less than
appropriate value even for non-annealed quasi-
hydroextruded sample (62 nm).
In our opinion, so striking difference in crystallite
size behavior can be related to the various mechanisms
of titanium deformation at room and liquid nitrogen
temperatures, as well as these mechanisms’ dependence
on grain size. It is known [16], that in HCP titanium
<а>-type slip is a dominant mode of plastic deformation
at room temperature (usually slip take place on {10.0}
first-order prism planes along the <a> direction). As
temperature decreases the twinning mode considerably
contributes to plastic deformation due to the limited
number of slip systems in HCP metals and it can
provide additional slip systems. It should be noted, that
strength increases during the deformation twinning
process due to the dislocation storage on the twins’
boundaries [17]. Twinning propensity decreases for
coarse-grained FCC and HCP metals with the grain size
decreasing during deformation [18, 19]. At the same
time temperature threshold, from which the twinning
contributes essentially to deformation process, declines.
So according to authors [20], during the deformation at
LNT critical grain size, above which the twinning
mechanism activates, is equal approximately 2 μm for
titanium. (It should be kept in mind that increase of
material purity promotes twinnability). As it shown
earlier [21], investigated in this work titanium after SPD
(compression-extrusion + wire-drawing) has ultrafine-
grained or sub-microcrystalline structure (average grain
size is about 150 nm). Annealing at temperatures till
300 ºC practically doesn’t influence the grain size. After
the annealing at 350 ºC bimodal structure with average
grain sizes of 150 nm and 0.6 μm forms in specimens
(individual grains can reach larger size). Annealing at
450 and 550 ºC leads to the recrystallization process,
thus microstructure with average grain size of 4 and
9 μm, respectively, is formed. Therefore, during the
quasi-hydrostatic extrusion process of these samples at
LNT twinning must be activated, especially in Ti,
annealed at 550 ºC. Direct conformation of this fact is
the effect of QHE temperature on texture of the
specimens, pre-annealed at different temperatures
(Table 3). It is obvious, that the deformation
temperature practically doesn’t influence on the degree
of the preferred orientations of sub-microcrystalline
samples, obtained by SPD. Difference between r values
for QHE77K and QHE300K samples increases with
pre-annealing temperature growth. Less degree of
texture of the samples after QHE77K is a consequence
of twinning activation. During the twinning process
grains fragmentation occurs and, therefore, different
crystallographic orientations generates, providing
specimens’ texture randomization. This process of
intensive grain fragmentation is responsible for the
crystallite size decreasing in the samples, pre-annealed
at 550 ºC (see Fig. 4). From our point of view, observed
crystallite size decreasing can explain non-monotonic
microhardness and tensile strength dependencies of
titanium after QHE77K on pre-annealing temperature,
which can be observed in [12].
Based on the obtained results of the QHE
temperature influence on CSD size and texture in SPD
titanium, we can conclude the following. In HCP Ti
twinning effect occurs during the SPD process of
coarse-grained samples only and disappears in
98 ISSN 1562-6016. ВАНТ. 2015. №2(96)
nanocrystalline and UFG state. This conclusion adjusts
with the authors’ results [19], who also didn’t observe
twinning effect in nanocrystalline titanium, which is
inherent to FCC metals [22, 23].
Table 3
Quasi-hydrostatic extrusion temperature (RT and LNT)
influence on degree of texture (%) of the titanium
samples, annealed at different temperatures
TQHE
Tanneal,ºC
20 °C 350 °C 450 °C 550 °C
LNT 72% 69% 58% 41%
RT 71% 74% 67% 57%
CONCLUSIONS
Texture and micro-structural investigations of high-
purity Ti, obtained by combination of SPD
(compression-extrusion + wire-drawing), thermal
treatment and quasi-hydrostatic extrusion at nitrogen
(QHE77K) and room temperatures (QHE300K) were
made using X-ray diffraction methods.
It was established, that in the titanium after the SPD
structure is formed, characterized by [10.0] axial texture
presence. Crystallite size in this sample was D = 70.4
and 92.8 nm along the bar axis and in the cross-section,
respectively. Value of microstrains was slightly higher
in longitudinal section (<ε> = 4.96·10
-3
) than in cross-
section (<ε> = 3.03·10
-3
).
In the preliminary deformed non-annealed samples,
obtained by QHE at room and nitrogen temperatures,
structural state is formed, parameters of which are
practically independent on the QHE deformation
temperature (degree of texture is r ≈ 0.7 and CSD size is
D ≈ 60 nm, value of microstrains is <ε> = 3.6…3.8∙10
-3
).
At the same time, QHE deformation temperature has
significant influence on the structural parameters of the
samples after SPD and following recrystallization
annealing at 450 and 550 ºC. Quasi-hydrostatic
extrusion at nitrogen temperature leads to more
effective crystallite size grinding than the deformation
at room temperature, especially in the coarse-grained
samples. This is a consequence of the twinning
activation at nitrogen temperature, which is an
alternative deformation mechanism to dislocation slip.
This assumption is confirmed by significant degree of
texture decreasing in samples.
REFERENCES
1. C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers
// JOM. 2008, v. 60, p. 46-49.
2. J. Klimas, M. Szota, M. Nabialek, A. Luka-
szewicz, A. Bukowska // J. Achieve. Mater. Manuf.
Eng. 2013, v. 61, p. 263.
3. R.Z. Valiev, A.V. Sergueeva, and A.K. Mu-
kherjee // Scripta Mater. 2003, v. 49, p. 669.
4. I.P. Semenova, A.I. Korshunov, G.Kh. Salim-
gareeva, V.V. Latysh, E.B. Yakushina, and R.Z. Valiev
// The Physics of Metals and Metallography. 2008,
v. 106, p. 211.
5. G. Serra, L. Morais, C.N. Elias, I.P. Semenova,
R. Valiev, G. Salimgareeva, M. Pithon, R. Lacerda //
Mater. Sci. Eng. C. 2013, v. 33, p. 4197.
6. S.V. Sajadifar, G.G. Yapici // Materials and
Design. 2014, v. 53, p. 749.
7. G. Purceka, O. Saraya, O. Kul, I. Karamanb,
G. G. Yapici, M. Haouaoui, H.J. Maier // Mater. Sci.
Eng. A. 2009, v. 517, p. 97.
8. E. Yu, I. Kim, D.H. Shin, and J. Kim // Mat.
Transact. 2008, v. 49, p. 38.
9. M.R. Shankar, B.C. Rao, S. Lee, S. Chan-
drasekar, A.H. King, W.D. Compton // Acta Mater.
2006, v. 54, p. 3691.
10. I.S. Braude, N.N. Gal’tsov, V.A. Moskalenko,
А.R. Smirnov // Low Temp. Phys. 2011, v. 37, p. 1042.
11. Z. Fan, H. Jiang, X. Sun, J. Song, X. Zhang,
C. Xie // Mater. Sci. Eng. A. 2009, v. 527, p. 45.
12. M.A. Tikhonovsky, P.А. Khaimovich, K.V. Kut-
niy, I.F. Kislyak, V.S. Okovit, T.Yu. Rudycheva // Low
Temp. Phys. 2013, v. 39, p. 1261.
13. P.A. Khaimovich // Russian Physics Journal.
2007, v. 50, p. 1079.
14. P.А. Khaimovich // Perspective materials. 2009,
v. 3, p. 363.
15. W.A. Dollase // J. Appl. Cryst. 1986, v. 19,
p. 267.
16. T.P. Chernyayeva, V.M. Grytsyna // PAST.
«Physics of Radiation Effect and Radiation Materials
Science». 2008, N 2, p. 15.
17. A.A. Salem, S.R. Kalidindi, R.D. Doherty,
S.L. Semiatin // Met. Mater. Trans. A. 2006, v. 37,
p. 259.
18. E. El-Danaf, S.R. Kalidindi, and R.D. Doherty //
Met. Mater. Trans. A. 1999, v. 30, p. 1223.
19. J.L. Sun, P.W. Trimby, F.K. Yan, X.Z. Liao,
N.R. Tao, and J.T. Wang // Scripta Mater. 2013, v. 69,
p. 428.
20. S.P. Malysheva, G.А. Salischev, R.М. Galeev,
V.N. Danilenko, М.М. Мyshlyaev, А.А. Popov // The
Physics of Metals and Metallography. 2003, v. 95,
p. 98.
21. M.A. Tikhonovsky, I.F. Kislyak, О.I. Volchok,
T.Yu. Rudycheva, V.G. Yarovoy, А.V. Kuzmin,
N.V. Kamyshanchenko, I.S. Nikulin // High Pressure
Physics and Technics. 2008, v. 18, p. 96.
22. J.-Y. Zhang, G. Liu, R.H. Wang, J. Li, J. Sun,
and E. Ma // Phys. Rev. B. 2010, v. 81, p. 172104.
23. S. Ni, Y.B. Wang, X.Z. Liao, H.Q. Li,
R.B. Figueiredo, S.P. Ringer, T.G. Langdon, and
Y.T. Zhu // Phys. Rev. B. 2011, v. 84, p. 235401.
Статья поступила в редакцию 14.08.2014 г.
ISSN 1562-6016. ВАНТ. 2015. №2(96) 99
ИССЛЕДОВАНИЕ СТРУКТУРНОГО СОСТОЯНИЯ ВЫСОКОЧИСТОГО ТИТАНА
ПОСЛЕ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ И КРИОГЕННОЙ
КВАЗИГИДРОЭКСТРУЗИИ МЕТОДАМИ РЕНТГЕНОВСКОЙ ДИФРАКЦИИ
Е.Е. Боклаг, И.В. Колодий, М.А. Тихоновский, И.Ф. Кисляк, П.А. Хаймович, А.А. Ефимов
Методами комбинированной интенсивной пластической деформации, термообработок и
квазигидроэкструзии (КГЭ) при азотной и комнатной температурах получены объемные
нанокристаллические образцы высокочистого титана. Исследования текстуры и микроструктурных
параметров титана проводились методами рентгеновской дифрактометрии. Установлено влияние исходного
структурного состояния образцов на деформационное поведение титана при КГЭ. КГЭ
ультрамелкозернистых образцов приводит к формированию структуры, параметры которой практически не
зависят от температуры КГЭ. Значительные отличия наблюдаются в случае предварительно отожженных
крупнозернистых образцов. Это связано с различными механизмами деформации (скольжением дислокаций
и двойникованием), которые активируются в процессе КГЭ при комнатной и азотной температурах.
ДОСЛІДЖЕННЯ СТРУКТУРНОГО СТАНУ ВИСОКОЧИСТОГО ТИТАНУ
ПІСЛЯ ІНТЕНСИВНОЇ ПЛАСТИЧНОЇ ДЕФОРМАЦІЇ І КРИОГЕННОЇ
КВАЗІГІДРОЕКСТРУЗІЇ МЕТОДАМИ РЕНТГЕНІВСЬКОЇ ДИФРАКЦІЇ
О.Є. Боклаг, І.В. Колодій, М.А. Тихоновський, І.Ф. Кисляк, П.О. Хаймович, О.А. Єфімов
Методами комбінованої інтенсивної пластичної деформації, термообробок та квазігідроекструзії (КГЕ)
при азотній та кімнатній температурах отримано нанокристалічні об’ємні зразки високочистого титану.
Дослідження текстури та мікроструктури титану проводилися методами рентгенівської дифракції.
Встановлено вплив початкового структурного стану зразків на деформаційну поведінку титану при КГЕ.
КГЕ ультрадрібнозернистих зразків призводить до формування структури з параметрами, незалежними від
температури КГЕ. Значні відмінності спостерігаються у випадку попередньо відпалених крупнозернистих
зразків. Це пов’язано з різними механізмами деформації (ковзанням дислокацій та двійнікуванням), що
активуються під час КГЕ при кімнатній та азотній температурах.
|