Улучшение сходимости нейро-фаззи кластеризации многомерных данных при использовании неевклидовых метрик
В статье предложен модифицированный алгоритм гибридной нечеткой кластеризации mdsFCM, который благодаря применению матрицы расстояний Махаланобиса в процессе подготовки центроидов к обработке сетью Кохонена и выполнения сжатия ее размера, позволяет повысить сходимость и, в ряде случаев, чувствите...
Gespeichert in:
| Veröffentlicht in: | Искусственный интеллект |
|---|---|
| Datum: | 2013 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут проблем штучного інтелекту МОН України та НАН України
2013
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/85077 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Улучшение сходимости нейро-фаззи кластеризации многомерных данных при использовании неевклидовых метрик / Л.Г. Ахметшина, А.А. Егоров, И.М. Удовик // Искусственный интеллект. — 2013. — № 3. — С. 534–541. — Бібліогр.: 8 назв. — рос. |