Топологическая классификация функций

Рассмотрен вопрос о топологической классификации функций, в частности гармонических функций. С использованием графа Кронрода–Риба дано необходимое и достаточное условие, когда два гармонических полинома общего положения будут топологически эквивалентными. Розглянуто питання про топологiчну класифiк...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Доповіді НАН України
Дата:2013
Автор: Шарко, В.В.
Формат: Стаття
Мова:Russian
Опубліковано: Видавничий дім "Академперіодика" НАН України 2013
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/85632
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Топологическая классификация функций / В.В. Шарко // Доповiдi Нацiональної академiї наук України. — 2013. — № 4. — С. 23–25. — Бібліогр.: 5 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Рассмотрен вопрос о топологической классификации функций, в частности гармонических функций. С использованием графа Кронрода–Риба дано необходимое и достаточное условие, когда два гармонических полинома общего положения будут топологически эквивалентными. Розглянуто питання про топологiчну класифiкацiю функцiй, зокрема гармонiчних функцiй. За допомогою графу Кронрода–Рiба дано необхiдну та достатню умову, коли два гармонiчних полiнома загального положення будуть топологiчно еквiвалентними. The problem of topological classification of functions, in particular harmonic functions, is considered. Using the Kronrod–Reeb graph, the necessary and sufficient condition for two harmonic polynomials of general position be topologically equivalent is given.
ISSN:1025-6415