Вибір провайдера хмарного сервісу на основі навчання з підкріпленням і репутації провайдерів
Для задачі вибору провайдера хмарного сервісу запропоновано використати підхід на основі навчання з підкріпленням, що додатково враховує репутацію провайдерів, яка визначається за досвідом використання їх сервісів та оцінками користувачів. Для провайдерів зі сталими параметрами надання сервісів пока...
Gespeichert in:
| Veröffentlicht in: | Реєстрація, зберігання і обробка даних |
|---|---|
| Datum: | 2014 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Інститут проблем реєстрації інформації НАН України
2014
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/87165 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Вибір провайдера хмарного сервісу на основі навчання з підкріпленням і репутації провайдерів / І.Ю. Мирошникова, О.М. Новіков // Реєстрація, зберігання і обробка даних. — 2014. — Т. 16, № 4. — С. 54-63. — Бібліогр.: 12 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Для задачі вибору провайдера хмарного сервісу запропоновано використати підхід на основі навчання з підкріпленням, що додатково враховує репутацію провайдерів, яка визначається за досвідом використання їх сервісів та оцінками користувачів. Для провайдерів зі сталими параметрами надання сервісів показано зменшення кількості кроків, що необхідні для навчання системи, порівняно з підходами на основі навчання з підкріпленням без урахування репутації провайдерів.
Reputation-oriented reinforcement learning approach was proposed for cloud service provider selec-tion problem. Provider reputation in the approach is based on their service using experience and users’ estimates. Modelling results for providers with fixed service parameters demonstrated the decreasing number of steps, required for system learning, as compared with reinforcement learning approaches with-out considering providers’ reputation.
|
|---|---|
| ISSN: | 1560-9189 |