Shear-flow-driven ion cyclotron instability of multicomponent magnetic field-aligned plasma flow

The ion cyclotron instability of magnetic field aligned sheared plasma flow with two H+ and ion species is investigated. The oxygen ions are assumed to be the active species while hydrogen ions are a background one, so that the frequency of oscillation approximately equals O+O+ cyclotron frequency....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
Hauptverfasser: Chibisov, D.V., Mikhailenko, V.S., Stepanov, K.N.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2011
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/90618
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Shear-flow-driven ion cyclotron instability of multicomponent magnetic field-aligned plasma flow / D.V. Chibisov, V.S. Mikhailenko, K.N. Stepanov // Вопросы атомной науки и техники. — 2011. — № 1. — С. 44-46. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-90618
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-906182025-02-09T09:40:55Z Shear-flow-driven ion cyclotron instability of multicomponent magnetic field-aligned plasma flow Збуджувана широм потокової швидкості іонна циклотронна нестійкість потоку багатокомпонентної плазми вздовж магнітного поля Возбуждаемая широм потоковой скорости ионная циклотронная неустойчивость потока многокомпонентной плазмы вдоль магнитного поля Chibisov, D.V. Mikhailenko, V.S. Stepanov, K.N. Фундаментальная физика плазмы The ion cyclotron instability of magnetic field aligned sheared plasma flow with two H+ and ion species is investigated. The oxygen ions are assumed to be the active species while hydrogen ions are a background one, so that the frequency of oscillation approximately equals O+O+ cyclotron frequency. The threshold and growth rate of instability versus the flow velocity shear and relative concentration of oxygen ions are analyzed. Досліджено іонна циклотронна нестійкість зсуненого потоку плазми вздовж магнітного поля з двома видами, H+ і , іонів. Іони кисню вважаються основним видом, тоді як іони водню є фоном, так що частота коливань приблизно дорівнює циклотронній частоті іонів O+O+. Аналізується залежність порога та інкремента нестійкості від градієнта швидкості потоку і відносної концентрації іонів кисню. Исследована ионная циклотронная неустойчивость сдвигового течения плазмы вдоль магнитного поля с двумя сортами, H+ и , ионов. Ионы кислорода считаются основным видом, тогда как ионы водорода являются фоном, так что частота колебаний приблизительно равна циклотронной частоте ионов O+O+. Анализируется зависимость порога и инкремента неустойчивости от градиента скорости течения и относительной концентрации ионов кислорода. 2011 Article Shear-flow-driven ion cyclotron instability of multicomponent magnetic field-aligned plasma flow / D.V. Chibisov, V.S. Mikhailenko, K.N. Stepanov // Вопросы атомной науки и техники. — 2011. — № 1. — С. 44-46. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 94.05.Lk, 94.20.wf https://nasplib.isofts.kiev.ua/handle/123456789/90618 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Фундаментальная физика плазмы
Фундаментальная физика плазмы
spellingShingle Фундаментальная физика плазмы
Фундаментальная физика плазмы
Chibisov, D.V.
Mikhailenko, V.S.
Stepanov, K.N.
Shear-flow-driven ion cyclotron instability of multicomponent magnetic field-aligned plasma flow
Вопросы атомной науки и техники
description The ion cyclotron instability of magnetic field aligned sheared plasma flow with two H+ and ion species is investigated. The oxygen ions are assumed to be the active species while hydrogen ions are a background one, so that the frequency of oscillation approximately equals O+O+ cyclotron frequency. The threshold and growth rate of instability versus the flow velocity shear and relative concentration of oxygen ions are analyzed.
format Article
author Chibisov, D.V.
Mikhailenko, V.S.
Stepanov, K.N.
author_facet Chibisov, D.V.
Mikhailenko, V.S.
Stepanov, K.N.
author_sort Chibisov, D.V.
title Shear-flow-driven ion cyclotron instability of multicomponent magnetic field-aligned plasma flow
title_short Shear-flow-driven ion cyclotron instability of multicomponent magnetic field-aligned plasma flow
title_full Shear-flow-driven ion cyclotron instability of multicomponent magnetic field-aligned plasma flow
title_fullStr Shear-flow-driven ion cyclotron instability of multicomponent magnetic field-aligned plasma flow
title_full_unstemmed Shear-flow-driven ion cyclotron instability of multicomponent magnetic field-aligned plasma flow
title_sort shear-flow-driven ion cyclotron instability of multicomponent magnetic field-aligned plasma flow
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2011
topic_facet Фундаментальная физика плазмы
url https://nasplib.isofts.kiev.ua/handle/123456789/90618
citation_txt Shear-flow-driven ion cyclotron instability of multicomponent magnetic field-aligned plasma flow / D.V. Chibisov, V.S. Mikhailenko, K.N. Stepanov // Вопросы атомной науки и техники. — 2011. — № 1. — С. 44-46. — Бібліогр.: 8 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT chibisovdv shearflowdrivenioncyclotroninstabilityofmulticomponentmagneticfieldalignedplasmaflow
AT mikhailenkovs shearflowdrivenioncyclotroninstabilityofmulticomponentmagneticfieldalignedplasmaflow
AT stepanovkn shearflowdrivenioncyclotroninstabilityofmulticomponentmagneticfieldalignedplasmaflow
AT chibisovdv zbudžuvanaširompotokovoíšvidkostííonnaciklotronnanestíjkístʹpotokubagatokomponentnoíplazmivzdovžmagnítnogopolâ
AT mikhailenkovs zbudžuvanaširompotokovoíšvidkostííonnaciklotronnanestíjkístʹpotokubagatokomponentnoíplazmivzdovžmagnítnogopolâ
AT stepanovkn zbudžuvanaširompotokovoíšvidkostííonnaciklotronnanestíjkístʹpotokubagatokomponentnoíplazmivzdovžmagnítnogopolâ
AT chibisovdv vozbuždaemaâširompotokovojskorostiionnaâciklotronnaâneustojčivostʹpotokamnogokomponentnojplazmyvdolʹmagnitnogopolâ
AT mikhailenkovs vozbuždaemaâširompotokovojskorostiionnaâciklotronnaâneustojčivostʹpotokamnogokomponentnojplazmyvdolʹmagnitnogopolâ
AT stepanovkn vozbuždaemaâširompotokovojskorostiionnaâciklotronnaâneustojčivostʹpotokamnogokomponentnojplazmyvdolʹmagnitnogopolâ
first_indexed 2025-11-25T11:55:19Z
last_indexed 2025-11-25T11:55:19Z
_version_ 1849763271801831424
fulltext SHEAR-FLOW-DRIVEN ION CYCLOTRON INSTABILITY OF MULTICOMPONENT MAGNETIC FIELD-ALIGNED PLASMA FLOW D.V. Chibisov, V.S. Mikhailenko, K.N. Stepanov V.N. Karazin Kharkov National University, Kharkov, Ukraine E-mail: chibisovdm@mail.ru The ion cyclotron instability of magnetic field aligned sheared plasma flow with two H + and ion species is investigated. The oxygen ions are assumed to be the active species while hydrogen ions are a background one, so that the frequency of oscillation approximately equals O + O + cyclotron frequency. The threshold and growth rate of instability versus the flow velocity shear and relative concentration of oxygen ions are analyzed. PACS: 94.05.Lk, 94.20.wf 1. INTRODUCTION 44 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2011. № 1. Series: Plasma Physics (17), p. 44-46. The investigations of the auroral region of the Earth’s ionosphere have discovered the inhomogeneous structures of electrostatic potentials which are correlated with regions of the formation and acceleration of the magnetic field-aligned upward ion beams [1]. One of the main signatures of these beams is the gradient of the flow velocity across the magnetic field (flow velocity shear) which can reach specifically for ions the values of 0iV ′ O + 6 ciω [2]. The upflowing ion beams are mainly composed of H + and O ions the composition of which varies significantly from beam to beam [3]. These auroral ion beams are often correlated with electrostatic ion cyclotron (EIC) oscillations having the cyclotron frequencies of hydrogen and oxygen ions [4,5]. It was shown that the flow velocity shear along with the other mechanisms may be responsible for the excitation of EIC waves in the auroral ionosphere due to development of the shear-flow-driven EIC instability [6,7]. + The shear-flow-driven EIC instability was studied in plasma with single ion species. However, the application of these results in ionosphere investigations requires taking into account the presence of several ion components, the relative concentrations of which are changed significantly with the altitude in ionospheric plasma. We have carried out the study of the shear-flow- driven EIC instability in the sheared magnetic field- aligned plasma flow with two, H + and , ion species. The oxygen ions are assumed to be the main species, while hydrogen ions are a background one, so that the frequency of oscillation approximately equals the O + O + cyclotron frequency. We have analyzed the dispersion equation for ion-hydrodynamic mode of the shear-flow- driven EIC instability assuming that the waves propagate nearly perpendicularly to the magnetic field but under the assumption that electrons are adiabatic. 2. THE INSTABILITY OF THE FIRST CYCLOTRON HARMONIC The kinetic dispersion relation for homogeneous multi-ion component plasma with a flow velocity shear is given by [8] ( ) 2 2 2 2 1 1, 1 1 y zDe D k K S kk k α αα iε ω π λ λ ⎛ = + + − +⎜⎜ ⎝ ∑ × (1) ( ) ( ) 0 0 2 yz n n n zz Tn kk V W z b S z kk V α α α α α α ω∞ =−∞ ⎞⎛ ⎞− ⎟× Γ −⎜ ⎟⎜ ⎟⎟⎝ ⎠⎠ ∑ = , where Dαλ is the Debye length, ( ) ( )b n nA b e I b−= , ( )nI b is the modified Bessel function, b k , ( )2Tα αρ⊥= Tαρ = T cV α αω is the thermal Larmor radius, Sα = ( )0 cV Xα αω′ is the normalized flow velocity shear, ( )0 2n c z zz n k V k TVα α αω ω= − − α , ( ) 2zW z e−= × ( ) 2 0 1 2 z i e dξπ ξ ⎛ ⎞ +⎜⎜ ⎝ ⎠ ∫ ⎟⎟ . We study the heavy-ion cyclotron mode having the frequency ( ) ( )0ch z hk n k V kω ω δω= + + with ( ) chKδω ω 0lV= 0lV . Assume, that both ion species have the equal flow velocities V and equal magnitudes of velocity shear V 0h 0h′ ′= , where indexes h and mean the heavy l O + and light H + ions. We first analyze the instability of the main 1n = cyclotron harmonic. For the oscillations propagating almost across the magnetic field so that inequality 1 1iz > holds the asymptotic form of W - function for large argument ( )iW z ( )( )21 1 2ii z zπ + i can be used. In this case the ion cyclotron damping can be neglected for both light and heavy ions. The dielectric permittivity of heavy ions can be written as ( ) ( ) 1 12 2 2 2 12 1 1 , ch h h h Dh y z Th h h z G A b k k k V S A b k ω δε δωλ δω ⎛≈ − −⎜ ⎝ ⎞ + ⎟⎟ ⎠ (2) where ( ) ( )( )1 1 01h h hG A b A b b= + − h . In the sum over cyclotron harmonics of light ions we retain only null summand because of significant difference in the masses of heavy and light ions. Then the dielectric permittivity of light ions becomes ( ) ( )0 02 2 2 0 1 1 2 y l l l l zDl l k S A b A b kk z δε λ ⎛ ⎞ ≈ − +⎜ ⎟⎜ ⎟ ⎝ ⎠ , (3) where 0 2l ch z Tlz k Vω= , l hS S= μ and h lm mμ = . The dispersion equation (1) ultimately takes the form ( ) ( )2 0K p K qδω δω− + 45 = , (4) where ( )( ) 12 2 1 11h h h Dh lp G k kδω τ α λ δε ω, ,k − ⎡= + − +⎣ ⎤ ⎦ ( )( ) 12 2 2 11 , ,h h h Dh lq G k k kσ τ α λ δε ω − ⎡ ⎤= + − +⎣ ⎦ ( )1 1h ch hA bδω ω= , , ( )2 2 1h y z Th h hk k V S A bσ = h h en nα = is the relative concentration of heavy ions, i eT Tτ = with . The solution of Eq. (4) has the form h lT T T= = i ( )1 1 12h h hδω δω β= ±Ω , (5) where ( )1 22 2 1 1 14h h h hδω σ βΩ = − , 1 11h hG hβ τ α= − + + ( ) ( ) ( )( )2 01l h l y z Th h l0A b k k S A bα α ρ+ − + . The solution (5) gives the shear-flow-driven EIC instability if inequality 2 14 h h h 2 1σ β δω> is met. For the wave numbers such as 1y Thk ρ and respectively 1z Tlk ρ this condition can be written as 1λ λ< , where 1 z Thkλ ρ= is the normalized wavelength parallel to the magnetic field, ( )1 1 1y Th h h hk S A bλ ρ β is the threshold wavelength of instability for harmonic and 1n = 1 11h hG hβ τ α− + . Then let us estimate the effect of the relative concentration of heavy ions on the condition 1 1hz > . From the definition of we have 1hz ( )1 12 2h z Th y h hz k V k S A b k 1z hδω β= = . (6) Taking into account that 1 1h hβ α∝ and ( )1 0.2hA b ≈ we obtain from Eq. (6) that the inequality 1 1hz > holds when 10h z hk S kyα τ . Now we investigate the effect of hα and on the growth rate of the shear-flow-driven EIC instability. The growth rate of instability obtained from Eq. (5) is approximately hS ( ) 1 2 1 11 2 h .γ λ λ β−⎡ ⎤⎣ ⎦ (7) With a decrease of hα the growth rate away from threshold decreases approximately as hα , however, the magnitude of threshold wavelength increases as hα , so that the longer waves become unstable. The dependence of the growth rate on the normalized shear is expressed by the similar relation, i.e. hS hSγ ∝ and 1 hSλ ∝ . Thus the effects of relative concentration of oxygen ions on the growth rate and long-wavelength threshold is identical with the flow velocity shear. We also numerically solved the dispersion equation (1) for the different values of relative concentration of oxygen ions and obtained the dependence of the growth rate versus the normalized wavelength along the magnetic field. The results of calculations for , 3hS = 1y Thk ρ = and 1τ = are shown in Figure. The maximum of the growth rate occurs at 1 1hz what is a boundary of ion- hydrodynamic mode which is located to the right of the point of maximum. The Figure shows a decrease of the growth rate as well as an increase of the long-wavelength threshold with the decrease of hα that is in a good agreement with analytical results. The growth rate of instability vs the normalized wavelength along the magnetic field for different magnitudes of relative concentration of O + ions 2. THE INSTABILITY OF THE HIGH CYCLOTRON HARMONICS Now we investigate the instability of the high, 1n , cyclotron harmonics. Using the same assumptions as for the first harmonic we sum over cyclotron harmonics at 1y Thk nρ and obtain approximately the dielectric permittivity of heavy ions as ( ) ( ) 2 2 2 2 2 1 1 , ch h hn n h Dh y z Th h n h z n G A b k k k V S A b k ω δε δωλ δω ⎛≈ − −⎜ ⎝ ⎞ + ⎟⎟ ⎠ (8) where ( ) 2 2 0 2 h h z z t hn h n hG z e e dt A b ⊥ ⊥− ⊥= +∫ and ( ) 2 2h Thz k k V n k Thω ρ⊥ ⊥= ≈ ⊥ . In the dielectric permittivity of light ions (3) we take into account that inequality 1y Thk ρ holds, so that 1y Tlk ρ > and then 2 21l k Dlδε ≈ λ . In this case the dispersion equation (1) takes the similar form as for the first harmonic (4). Its solution is ( ) 2nh nh nhδω ω β= ±Ω , (9) where ( )nh ch n hn A bδω ω= , ( )1 22 24nh nh h nhδω σ βΩ = − , 1nh nh h l hGβ τ α α α≈ − + + . The solution (9) gives the shear-flow-driven EIC instability if inequality 24 h nh nh 2σ β δω> is met. This condition can be also written as nλ λ< , where ( )2 n y Th h nh n hk S n A bλ ρ β is the threshold wavelength of instability for harmonics. 1n Note that the function ( )n hA b at 1y Thk nρ has the asymptotic form ( ) ( ) ( 2 2 21 2 exp 2n h Th TiA b k n k )π ρ⊥ − ρ⊥ n and for y Thk ρ = we have ( ) 0.2n hA b n≈ that gives 1nλ λ≈ . Thus the long-wavelength threshold is the same as for the first and high cyclotron harmonics. 2. W.E. Amatucci. Inhomogeneous plasma flows: A review of in situ observations and laboratory experiments// J. Geophys. Res. (104). 1999, N A7, p. 14481-14503. 46 Evaluating the effect of the relative concentration on the condition 1hnz > , we conclude that for y Thk nρ = the condition on the hα coincides with that of the main harmonic. Now we estimate the effect of hα and on the growth rate of high cyclotron harmonic of the shear- flow-driven EIC instability. The growth rate of instability obtained from Eq. (9) approximately equals hS 3. E. Moebius, L. Tang, L.M. Kistler, M. Popecki, E.J. Lund, D. Klumpar, W. Peterson, E. Shelley, B. Kle-cker, D. Hovestadt, C.W. Carlson, R.E. Ergun, J.P. McFadden, F.S. Mozer, M. Temerin, C. Cattell, R. Elphic, R. Strangeway, R. Pfaff. Species dependent energies in upward directed ion beams over auroral arcs as observed with FAST TEAMS // Geophys. Res. Lett. (25). 1998, N 12, p. 2029-2032. 4. C.A. Cattell, F.S. Mozer, I. Roth, R.R. Anderson, R.C. Elphic, W. Lennartsson, and E. Ungstrup. ISEE 1 observations of electrostatic ion cyclotron waves in association with ion beams on auroral field lines from 2.5 to 4.5 RE // J. Geophys. Res. (96). 1991, N A7, p. 11421-11439. ( ) 1 21 2n nγ λ λ β−⎡ ⎤⎣ ⎦ .h (10) Since the thresholds 1λ and nλ are equal we obtain that the dependence of growth rate on the concentration and the shear is the same as for the main cyclotron harmonic. The numerical calculations confirm these results. 5. C. Cattell, R. Bergmann, K. Sigsbee, C. Carlson, C. Chaston, R. Ergun, J. McFadden, F.S. Mozer, M. Temerin, R. Strangeway, R. Elphic, L. Kistler, E. Moebius, L. Tang, D. Klumpar, and R. Pfaff. The association of electrostatic ion cyclotron waves, ion and electron beams and field-aligned currents: FAST observations of an auroral zone crossing near midnight // Geophys. Res. Lett. (25). 1998, N 12, p. 2053-2056. 3. CONCLUSIONS The presence of the light H + ion species in the sheared plasma flow with O ions leads to a decrease of the growth rate of the shear-flow-driven EIC instability with ion cyclotron frequency, whereas the long- wavelength threshold of instability is shifted toward longer wavelengths both for the main and high cyclotron harmonics. In so doing the effects of relative concentration of oxygen ions on the growth rate and long- wavelength threshold is identical to the flow velocity shear. + O + 1n = 6. V.S. Mikhailenko, D.V. Chibisov, and V.V. Mikhailenko. Shear-flow-driven ion cyclotron instabilities of magnetic field-aligned flow of inhomogeneous plasma // Phys. Plasmas (13). 2006, N 10, p. 102105 (6 p.). 7. E.V. Belova, Ya. Blenski, M. Denis, L.М. Zelenyj, S.P. Savin. Excitation of ion-cyclotron waves at the boundary of the magnetosphere // Fizika Plasmy. 1991, v. 17, N 8, p. 952-961 (in Russian). REFERENCES 8. D.V. Chibisov, V.S. Mikhailenko, and K.N. Stepanov. Current-driven ion cyclotron instability of multicomponent field-aligned sheared flow // Phys. Plasmas (17). 2010, N 8, p. 082903 (6p.). 1. R.E. Ergun, L. Andersson, D.S. Main, Y.-J. Su, C.W. Carlson, J.P. McFadden, and F.S. Mozer. Parallel electric fields in the upward current region of the aurora: Indirect and direct observations// Phys. Plasmas (9). 2002, N 9, p. 3685-3694. Article received 27.10.10 ВОЗБУЖДАЕМАЯ ШИРОМ ПОТОКОВОЙ СКОРОСТИ ИОННАЯ ЦИКЛОТРОННАЯ НЕУСТОЙЧИВОСТЬ ПОТОКА МНОГОКОМПОНЕНТНОЙ ПЛАЗМЫ ВДОЛЬ МАГНИТНОГО ПОЛЯ Д.В. Чибисов, В.С. Михайленко, К.Н. Степанов Исследована ионная циклотронная неустойчивость сдвигового течения плазмы вдоль магнитного поля с двумя сортами, H + и , ионов. Ионы кислорода считаются основным видом, тогда как ионы водорода являются фоном, так что частота колебаний приблизительно равна циклотронной частоте ионов O + O + . Анализируется зависимость порога и инкремента неустойчивости от градиента скорости течения и относительной концентрации ионов кислорода. ЗБУДЖУВАНА ШИРОМ ПОТОКОВОЇ ШВИДКОСТІ ІОННА ЦИКЛОТРОННА НЕСТІЙКІСТЬ ПОТОКУ БАГАТОКОМПОНЕНТНОЇ ПЛАЗМИ ВЗДОВЖ МАГНІТНОГО ПОЛЯ Д.В. Чібісов, В.С. Михайленко, К.М. Степанов Досліджено іонна циклотронна нестійкість зсуненого потоку плазми вздовж магнітного поля з двома видами, H + і , іонів. Іони кисню вважаються основним видом, тоді як іони водню є фоном, так що частота коливань приблизно дорівнює циклотронній частоті іонів O + O + . Аналізується залежність порога та інкремента нестійкості від градієнта швидкості потоку і відносної концентрації іонів кисню. D.V. Chibisov, V.S. Mikhailenko, K.N. Stepanov Article received 27.10.10 ВОЗБУЖДАЕМАЯ ШИРОМ ПОТОКОВОЙ СКОРОСТИ ИОННАЯ ЦИКЛОТРОННАЯ НЕУСТОЙЧИВОСТЬ ПОТОКА МНОГОКОМПОНЕНТНОЙ ПЛАЗМЫ ВДОЛЬ МАГНИТНОГО ПОЛЯ Д.В. Чибисов , В.С. Михайленко, К.Н. Степанов Д.В. Чібісов , В.С. Михайленко, К.М. Степанов