An Operator Theoretic Approach to the Prime Number Theorem

We establish an operator theoretic version of the Wiener–Ikehara Tauberian theorem and use it to obtain a short proof of the Prime number theorem that should be accessible to anyone with a basic knowledge of operator theory and Fourier analysis. Mathematical Subject Classification 2020: 47G10, 11M05...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
1. Verfasser: Olsen, Jan-Fredrik
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023
Schlagworte:
Online Zugang:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1001
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
id oai:jmag.ilt.kharkiv.ua:article-1001
record_format ojs
spelling oai:jmag.ilt.kharkiv.ua:article-10012024-10-11T09:38:38Z An Operator Theoretic Approach to the Prime Number Theorem An Operator Theoretic Approach to the Prime Number Theorem Olsen, Jan-Fredrik теорема про розподiл простих чисел тауберови теореми iнтегральнi оператори prime number theorem Tauberian theorems integral operators We establish an operator theoretic version of the Wiener–Ikehara Tauberian theorem and use it to obtain a short proof of the Prime number theorem that should be accessible to anyone with a basic knowledge of operator theory and Fourier analysis. Mathematical Subject Classification 2020: 47G10, 11M05, 11M45 Ми встановлюємо теоретико-операторну версiю теореми Вiнера–Iкегара–Таубера та використовуємо її для одержання короткого доведення теореми про розподiл простих чисел, яке має бути доступним будь-кому, хто володiє базовими знаннями з теорiї операторiв i аналiзу Фур’є. Mathematical Subject Classification 2020: 47G10, 11M05, 11M45 Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023-04-25 Article Article application/pdf https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1001 10.15407/mag19.01.172 Journal of Mathematical Physics, Analysis, Geometry; Vol. 19 No. 1 (2023): Dedicated to Volodymyr Marchenko's 100th birthday; 172-177 Журнал математической физики, анализа, геометрии; Том 19 № 1 (2023): Присвячений 100-річчю від дня народження Володимира Олександровича Марченка; 172-177 Журнал математичної фізики, аналізу, геометрії; Том 19 № 1 (2023): Присвячений 100-річчю від дня народження Володимира Олександровича Марченка; 172-177 1817-5805 1812-9471 en https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1001/jm19-0172e
institution Journal of Mathematical Physics, Analysis, Geometry
baseUrl_str
datestamp_date 2024-10-11T09:38:38Z
collection OJS
language English
topic теорема про розподiл простих чисел
тауберови теореми
iнтегральнi оператори
spellingShingle теорема про розподiл простих чисел
тауберови теореми
iнтегральнi оператори
Olsen, Jan-Fredrik
An Operator Theoretic Approach to the Prime Number Theorem
topic_facet теорема про розподiл простих чисел
тауберови теореми
iнтегральнi оператори
prime number theorem
Tauberian theorems
integral operators
format Article
author Olsen, Jan-Fredrik
author_facet Olsen, Jan-Fredrik
author_sort Olsen, Jan-Fredrik
title An Operator Theoretic Approach to the Prime Number Theorem
title_short An Operator Theoretic Approach to the Prime Number Theorem
title_full An Operator Theoretic Approach to the Prime Number Theorem
title_fullStr An Operator Theoretic Approach to the Prime Number Theorem
title_full_unstemmed An Operator Theoretic Approach to the Prime Number Theorem
title_sort operator theoretic approach to the prime number theorem
title_alt An Operator Theoretic Approach to the Prime Number Theorem
description We establish an operator theoretic version of the Wiener–Ikehara Tauberian theorem and use it to obtain a short proof of the Prime number theorem that should be accessible to anyone with a basic knowledge of operator theory and Fourier analysis. Mathematical Subject Classification 2020: 47G10, 11M05, 11M45
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
publishDate 2023
url https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1001
work_keys_str_mv AT olsenjanfredrik anoperatortheoreticapproachtotheprimenumbertheorem
AT olsenjanfredrik operatortheoreticapproachtotheprimenumbertheorem
first_indexed 2025-09-26T01:40:35Z
last_indexed 2025-09-26T01:40:35Z
_version_ 1850836702077124608