Creating and controlling band gaps in periodic media with small resonators

We investigate spectral properties of the Neumann Laplacian ${\mathcal A}_\varepsilon$ on a periodic unbounded domain ${\Omega}_\varepsilon$ depending on a small parameter $\varepsilon>0$. The domain ${\Omega}_\varepsilon$ is obtained by removing from ${\mathbb R}^n$ $m\in{\mathbb N}$ familie...

Full description

Saved in:
Bibliographic Details
Date:2023
Main Authors: Khrabustovskyi, Andrii, Khruslov, Evgen
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023
Subjects:
Online Access:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1015
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Description
Summary:We investigate spectral properties of the Neumann Laplacian ${\mathcal A}_\varepsilon$ on a periodic unbounded domain ${\Omega}_\varepsilon$ depending on a small parameter $\varepsilon>0$. The domain ${\Omega}_\varepsilon$ is obtained by removing from ${\mathbb R}^n$ $m\in{\mathbb N}$ families of $\varepsilon$-periodically distributed small resonators. We prove that the spectrum of ${\mathcal A}_\varepsilon$ has at least $m$ gaps. The first $m$ gaps converge as $\varepsilon\to 0$ to some intervals whose location and lengths can be controlled by a suitable choice of the resonators; other gaps (if any) go to infinity. An application to the theory of photonic crystals is discussed. Mathematical Subject Classification 2020: 35B27, 35P05, 47A75