Weighted Elliptic Equations in Dimension N with Subcritical and Critical Double Exponential Nonlinearities
In this paper, we prove the existence of nontrivial solutions for the following weighted problem without the Ambrosetti-Rabinowitz condition:$- \mathrm{div} (\sigma(x)|\nabla u|^{N-2} \nabla u) = f(x,u)$ and $u >0$ in $B$, $u=0$ on $\partial B$, where $B$ is the unit ball of $\mathbb{R}^N$, $...
Збережено в:
| Дата: | 2023 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2023
|
| Теми: | |
| Онлайн доступ: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1020 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Journal of Mathematical Physics, Analysis, Geometry |
Репозитарії
Journal of Mathematical Physics, Analysis, Geometry| Резюме: | In this paper, we prove the existence of nontrivial solutions for the following weighted problem without the Ambrosetti-Rabinowitz condition:$- \mathrm{div} (\sigma(x)|\nabla u|^{N-2} \nabla u) = f(x,u)$ and $u >0$ in $B$, $u=0$ on $\partial B$, where $B$ is the unit ball of $\mathbb{R}^N$, $ \sigma(x)=\left(\log\left(\frac{e}{|x|}\right)\right)^{N-1}$ is the singular logarithmic weight in the Trudinger-Moser embedding. The nonlinearity is a critical or subcritical growth in view of Trudinger-Moser inequalities. In order to obtain the existence result, we used minimax techniques combined with the Trudinger-Moser inequality. In the critical case, the associated energy does not satisfy the condition of compactness. We provide a new condition for growth and we stress its importance to avoid compactness level.
Mathematical Subject Classification 2020: 46E35, 35J20, 35J33, 35J60. |
|---|