Weighted Elliptic Equations in Dimension N with Subcritical and Critical Double Exponential Nonlinearities
In this paper, we prove the existence of nontrivial solutions for the following weighted problem without the Ambrosetti-Rabinowitz condition:$- \mathrm{div} (\sigma(x)|\nabla u|^{N-2} \nabla u) = f(x,u)$ and $u >0$ in $B$, $u=0$ on $\partial B$, where $B$ is the unit ball of $\mathbb{R}^N$, $...
Saved in:
| Date: | 2023 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2023
|
| Subjects: | |
| Online Access: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1020 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Journal of Mathematical Physics, Analysis, Geometry |
Institution
Journal of Mathematical Physics, Analysis, Geometry| Summary: | In this paper, we prove the existence of nontrivial solutions for the following weighted problem without the Ambrosetti-Rabinowitz condition:$- \mathrm{div} (\sigma(x)|\nabla u|^{N-2} \nabla u) = f(x,u)$ and $u >0$ in $B$, $u=0$ on $\partial B$, where $B$ is the unit ball of $\mathbb{R}^N$, $ \sigma(x)=\left(\log\left(\frac{e}{|x|}\right)\right)^{N-1}$ is the singular logarithmic weight in the Trudinger-Moser embedding. The nonlinearity is a critical or subcritical growth in view of Trudinger-Moser inequalities. In order to obtain the existence result, we used minimax techniques combined with the Trudinger-Moser inequality. In the critical case, the associated energy does not satisfy the condition of compactness. We provide a new condition for growth and we stress its importance to avoid compactness level.
Mathematical Subject Classification 2020: 46E35, 35J20, 35J33, 35J60. |
|---|