Weighted Elliptic Equations in Dimension N with Subcritical and Critical Double Exponential Nonlinearities

In this paper, we prove the existence of nontrivial solutions for the following weighted problem without the Ambrosetti-Rabinowitz condition:$- \mathrm{div} (\sigma(x)|\nabla u|^{N-2} \nabla u) = f(x,u)$ and $u >0$ in $B$, $u=0$ on $\partial B$, where $B$ is the unit ball of $\mathbb{R}^N$, $...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
Hauptverfasser: Abid, Imed, Jaidane, Rached
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023
Schlagworte:
Online Zugang:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1020
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
id oai:jmag.ilt.kharkiv.ua:article-1020
record_format ojs
spelling oai:jmag.ilt.kharkiv.ua:article-10202023-11-29T18:04:11Z Weighted Elliptic Equations in Dimension N with Subcritical and Critical Double Exponential Nonlinearities Weighted Elliptic Equations in Dimension N with Subcritical and Critical Double Exponential Nonlinearities Weighted Elliptic Equations in Dimension N with Subcritical and Critical Double Exponential Nonlinearities Abid, Imed Jaidane, Rached нерiвнiсть Трудiнґера–Мозера нелiнiйнiсть подвiй- ного експоненцiального зростання критичнi експоненти рiвень компактностi Trudinger-Moser inequality nonlinearity of double exponential growth critical exponents compactness level In this paper, we prove the existence of nontrivial solutions for the following weighted problem without the Ambrosetti-Rabinowitz condition:$- \mathrm{div} (\sigma(x)|\nabla u|^{N-2} \nabla u) = f(x,u)$ and $u >0$ in $B$, $u=0$ on $\partial B$, where $B$ is the unit ball of $\mathbb{R}^N$, $ \sigma(x)=\left(\log\left(\frac{e}{|x|}\right)\right)^{N-1}$ is the singular logarithmic weight in the Trudinger-Moser embedding. The nonlinearity is a critical or subcritical growth in view of Trudinger-Moser inequalities. In order to obtain the existence result, we used minimax techniques combined with the Trudinger-Moser inequality. In the critical case, the associated energy does not satisfy the condition of compactness. We provide a new condition for growth and we stress its importance to avoid compactness level. Mathematical Subject Classification 2020: 46E35, 35J20, 35J33, 35J60. У роботi доведено iснування нетривiального розв’язку для такої ва-гової задачi без умови Амбросеттi–Рабiновiца: $- \mathrm{div} (\sigma(x)|\nabla u|^{N-2} \nabla u) = f(x,u)$ i $u >0$ в $B$, $u=0$ на $\partial B$, де $B$ є одиничною кулею в $\mathbb{R}^N$, $\sigma(x)=\left(\log\left(\frac{e}{|x|}\right)\right)^{N-1}$ є сингулярною логарифмiчною вагою у вкладеннi Трудiнґера–Мозера. Нелiнiйнiсть дає критичне або субкритичне зростання вiдносно нерiвностi Трудiнґера–Мозера. Ми скористалися мiнiмакс технiкою в комбiнацiї з нерiвнiстю Трудiнґера–Мозера, щоб довести iснування розв’язку. Ми запровадили нову умову для зростання та наполягаємо на її важливостi для позбавлення рiвня компактностi. Mathematical Subject Classification 2020: 46E35, 35J20, 35J33, 35J60. Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023-11-29 Article Article application/pdf https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1020 10.15407/mag19.03.527 Journal of Mathematical Physics, Analysis, Geometry; Vol. 19 No. 3 (2023); 527-555 Журнал математической физики, анализа, геометрии; Том 19 № 3 (2023); 527-555 Журнал математичної фізики, аналізу, геометрії; Том 19 № 3 (2023); 527-555 1817-5805 1812-9471 en https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1020/jm19-0527e
institution Journal of Mathematical Physics, Analysis, Geometry
baseUrl_str
datestamp_date 2023-11-29T18:04:11Z
collection OJS
language English
topic нерiвнiсть Трудiнґера–Мозера
нелiнiйнiсть подвiй- ного експоненцiального зростання
критичнi експоненти
рiвень компактностi
spellingShingle нерiвнiсть Трудiнґера–Мозера
нелiнiйнiсть подвiй- ного експоненцiального зростання
критичнi експоненти
рiвень компактностi
Abid, Imed
Jaidane, Rached
Weighted Elliptic Equations in Dimension N with Subcritical and Critical Double Exponential Nonlinearities
topic_facet нерiвнiсть Трудiнґера–Мозера
нелiнiйнiсть подвiй- ного експоненцiального зростання
критичнi експоненти
рiвень компактностi
Trudinger-Moser inequality
nonlinearity of double exponential growth
critical exponents
compactness level
format Article
author Abid, Imed
Jaidane, Rached
author_facet Abid, Imed
Jaidane, Rached
author_sort Abid, Imed
title Weighted Elliptic Equations in Dimension N with Subcritical and Critical Double Exponential Nonlinearities
title_short Weighted Elliptic Equations in Dimension N with Subcritical and Critical Double Exponential Nonlinearities
title_full Weighted Elliptic Equations in Dimension N with Subcritical and Critical Double Exponential Nonlinearities
title_fullStr Weighted Elliptic Equations in Dimension N with Subcritical and Critical Double Exponential Nonlinearities
title_full_unstemmed Weighted Elliptic Equations in Dimension N with Subcritical and Critical Double Exponential Nonlinearities
title_sort weighted elliptic equations in dimension n with subcritical and critical double exponential nonlinearities
title_alt Weighted Elliptic Equations in Dimension N with Subcritical and Critical Double Exponential Nonlinearities
Weighted Elliptic Equations in Dimension N with Subcritical and Critical Double Exponential Nonlinearities
description In this paper, we prove the existence of nontrivial solutions for the following weighted problem without the Ambrosetti-Rabinowitz condition:$- \mathrm{div} (\sigma(x)|\nabla u|^{N-2} \nabla u) = f(x,u)$ and $u >0$ in $B$, $u=0$ on $\partial B$, where $B$ is the unit ball of $\mathbb{R}^N$, $ \sigma(x)=\left(\log\left(\frac{e}{|x|}\right)\right)^{N-1}$ is the singular logarithmic weight in the Trudinger-Moser embedding. The nonlinearity is a critical or subcritical growth in view of Trudinger-Moser inequalities. In order to obtain the existence result, we used minimax techniques combined with the Trudinger-Moser inequality. In the critical case, the associated energy does not satisfy the condition of compactness. We provide a new condition for growth and we stress its importance to avoid compactness level. Mathematical Subject Classification 2020: 46E35, 35J20, 35J33, 35J60.
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
publishDate 2023
url https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1020
work_keys_str_mv AT abidimed weightedellipticequationsindimensionnwithsubcriticalandcriticaldoubleexponentialnonlinearities
AT jaidanerached weightedellipticequationsindimensionnwithsubcriticalandcriticaldoubleexponentialnonlinearities
first_indexed 2025-09-26T01:40:37Z
last_indexed 2025-09-26T01:40:37Z
_version_ 1844288776151498752