Some Results on Tangent Bundles with Berger Type Deformed Sasaki Metric over Kählerian Manifolds

Let $M$ be a Kählerian manifold equipped with an almost complex structure $J$ and a Riemannian metric $g$, and let $TM$ be its tangent bundle with the Berger type deformed Sasaki metric. In this paper, firstly, we find all forms of Riemannian curvature tensors of $TM$. Secondly, we search the condit...

Full description

Saved in:
Bibliographic Details
Date:2023
Main Authors: Gezer, Aydin, Zagane, Abderrahim, Djaa, Nour Elhouda
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2023
Subjects:
Online Access:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1025
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Description
Summary:Let $M$ be a Kählerian manifold equipped with an almost complex structure $J$ and a Riemannian metric $g$, and let $TM$ be its tangent bundle with the Berger type deformed Sasaki metric. In this paper, firstly, we find all forms of Riemannian curvature tensors of $TM$. Secondly, we search the conditions under which a vector field is harmonic with respect to the Berger type deformed Sasaki metric and give some examples of harmonic vector fields. Finally, we study the harmonicity of maps between the Riemannian manifold and the tangent bundle of another Riemannian manifold and vice versa. Mathematical Subject Classification 2020: 53C07, 53C55, 53A45