On a Schrödinger–Kirchhoff Type Equation Involving the Fractional p-Laplacian without the Ambrosetti–Rabinowitz Condition

In this paper, we consider the existence and multiplicity of many weak solutions for the following fractional Schrödinger–Kirchhoff type equation:\begin{align*} \left(a+b\displaystyle\iint_{\mathbb{R}^{2N}}\displaystyle\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}\mathrm{d}x\mathrm{d}y\right)^{p-1} & \...

Full description

Saved in:
Bibliographic Details
Date:2024
Main Authors: Bouabdallah, Mohamed, Chakrone, Omar, Chehabi, Mohammed
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2024
Subjects:
Online Access:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1052
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Description
Summary:In this paper, we consider the existence and multiplicity of many weak solutions for the following fractional Schrödinger–Kirchhoff type equation:\begin{align*} \left(a+b\displaystyle\iint_{\mathbb{R}^{2N}}\displaystyle\frac{|u(x)-u(y)|^p}{|x-y|^{N+ps}}\mathrm{d}x\mathrm{d}y\right)^{p-1} & \times (-\Delta)^s_pu+\lambda V(x)|u|^{p-2}u \\ & =f(x,u)+h(x)\ \mathrm{ in } \ \mathbb{R}^N,\end{align*}where $N > sp$, $a,b > 0$ are constants, $\lambda$ is a parameter, $(-\Delta)^s_p$ is the fractional $p$-Laplacian operator with $0 < s < 1 < p < \infty$, nonlinearity $f(x,u)$ and potential function $V (x)$ satisfy some suitable assumptions. Under those conditions, some new results are obtained for $\lambda > 0$ large enough by applying the variation methods. Mathematical Subject Classification 2020: 35A15, 35J60, 35R11