Periodic Gibbs Measures for Three-State Hard-Core Models in the Case Wand

We consider fertile three-state Hard-Core (HC) models with the activityparameter $\lambda >0$ on a Cayley tree. It is known that there exist four types ofsuch models: wrench, wand, hinge, and pipe. These models arise as simpleexamples of loss networks with nearest-neighbor exclusion. In the c...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Khakimov, Rustamjon, Umirzakova, Kamola
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2024
Теми:
Онлайн доступ:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1053
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Репозитарії

Journal of Mathematical Physics, Analysis, Geometry
Опис
Резюме:We consider fertile three-state Hard-Core (HC) models with the activityparameter $\lambda >0$ on a Cayley tree. It is known that there exist four types ofsuch models: wrench, wand, hinge, and pipe. These models arise as simpleexamples of loss networks with nearest-neighbor exclusion. In the case wand on a Cayley tree of order $k\ge 2$, exact critical values $\lambda >0$ are found for which two-periodic Gibbs measures are not unique. Moreover, we study the extremality of the existing two-periodic Gibbs measures on a Cayley tree of order two. Mathematical Subject Classification 2020: 82B26, 60K35