Periodic Gibbs Measures for Three-State Hard-Core Models in the Case Wand

We consider fertile three-state Hard-Core (HC) models with the activityparameter $\lambda >0$ on a Cayley tree. It is known that there exist four types ofsuch models: wrench, wand, hinge, and pipe. These models arise as simpleexamples of loss networks with nearest-neighbor exclusion. In the c...

Full description

Saved in:
Bibliographic Details
Date:2024
Main Authors: Khakimov, Rustamjon, Umirzakova, Kamola
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2024
Subjects:
Online Access:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1053
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
id oai:jmag.ilt.kharkiv.ua:article-1053
record_format ojs
spelling oai:jmag.ilt.kharkiv.ua:article-10532024-12-10T20:10:54Z Periodic Gibbs Measures for Three-State Hard-Core Models in the Case Wand Periodic Gibbs Measures for Three-State Hard-Core Models in the Case Wand Periodic Gibbs Measures for Three-State Hard-Core Models in the Case Wand Khakimov, Rustamjon Umirzakova, Kamola дерево Кейлi конфiгурацiя фертильна модель Hard- core мiра Гiббса критична температура екстремальнiсть мiри Cayley tree configuration fertile Hard-core model Gibbs measure critical temperature extreme measure We consider fertile three-state Hard-Core (HC) models with the activityparameter $\lambda >0$ on a Cayley tree. It is known that there exist four types ofsuch models: wrench, wand, hinge, and pipe. These models arise as simpleexamples of loss networks with nearest-neighbor exclusion. In the case wand on a Cayley tree of order $k\ge 2$, exact critical values $\lambda >0$ are found for which two-periodic Gibbs measures are not unique. Moreover, we study the extremality of the existing two-periodic Gibbs measures on a Cayley tree of order two. Mathematical Subject Classification 2020: 82B26, 60K35 Ми розглядаємо фертильнi (Hard-Core) HC-моделi з трьома стана-ми з параметром активностi $\lambda >0$ на деревi Кейлi. Вiдомо, що iснуютьчотири типи таких моделей: гайковий ключ, паличка, петля i труба. Цiмоделi виникають як простi приклади втрат взаємодiї з найближчимсусiдом. У випадку “палички” на деревi Кейлi порядку $k\ge 2$ знайденоточнi критичнi значення $\lambda >0$, для яких двоперiодичнi мiри Гiббса неє єдиними. Крiм того, ми вивчаємо екстремальнiсть iснуючих двоперiо-дичних мiр Гiббса на деревi Кейлi другого порядку. Mathematical Subject Classification 2020: 82B26, 60K35 Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2024-04-01 Article Article application/pdf https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1053 10.15407/mag20.01.066 Journal of Mathematical Physics, Analysis, Geometry; Vol. 20 No. 1 (2024); 66–81 Журнал математической физики, анализа, геометрии; Том 20 № 1 (2024); 66–81 Журнал математичної фізики, аналізу, геометрії; Том 20 № 1 (2024); 66–81 1817-5805 1812-9471 en https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1053/jm20-0066e
institution Journal of Mathematical Physics, Analysis, Geometry
baseUrl_str
datestamp_date 2024-12-10T20:10:54Z
collection OJS
language English
topic дерево Кейлi
конфiгурацiя
фертильна модель Hard- core
мiра Гiббса
критична температура
екстремальнiсть мiри
spellingShingle дерево Кейлi
конфiгурацiя
фертильна модель Hard- core
мiра Гiббса
критична температура
екстремальнiсть мiри
Khakimov, Rustamjon
Umirzakova, Kamola
Periodic Gibbs Measures for Three-State Hard-Core Models in the Case Wand
topic_facet дерево Кейлi
конфiгурацiя
фертильна модель Hard- core
мiра Гiббса
критична температура
екстремальнiсть мiри
Cayley tree
configuration
fertile Hard-core model
Gibbs measure
critical temperature
extreme measure
format Article
author Khakimov, Rustamjon
Umirzakova, Kamola
author_facet Khakimov, Rustamjon
Umirzakova, Kamola
author_sort Khakimov, Rustamjon
title Periodic Gibbs Measures for Three-State Hard-Core Models in the Case Wand
title_short Periodic Gibbs Measures for Three-State Hard-Core Models in the Case Wand
title_full Periodic Gibbs Measures for Three-State Hard-Core Models in the Case Wand
title_fullStr Periodic Gibbs Measures for Three-State Hard-Core Models in the Case Wand
title_full_unstemmed Periodic Gibbs Measures for Three-State Hard-Core Models in the Case Wand
title_sort periodic gibbs measures for three-state hard-core models in the case wand
title_alt Periodic Gibbs Measures for Three-State Hard-Core Models in the Case Wand
Periodic Gibbs Measures for Three-State Hard-Core Models in the Case Wand
description We consider fertile three-state Hard-Core (HC) models with the activityparameter $\lambda >0$ on a Cayley tree. It is known that there exist four types ofsuch models: wrench, wand, hinge, and pipe. These models arise as simpleexamples of loss networks with nearest-neighbor exclusion. In the case wand on a Cayley tree of order $k\ge 2$, exact critical values $\lambda >0$ are found for which two-periodic Gibbs measures are not unique. Moreover, we study the extremality of the existing two-periodic Gibbs measures on a Cayley tree of order two. Mathematical Subject Classification 2020: 82B26, 60K35
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
publishDate 2024
url https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1053
work_keys_str_mv AT khakimovrustamjon periodicgibbsmeasuresforthreestatehardcoremodelsinthecasewand
AT umirzakovakamola periodicgibbsmeasuresforthreestatehardcoremodelsinthecasewand
first_indexed 2025-09-26T01:40:42Z
last_indexed 2025-09-26T01:40:42Z
_version_ 1850836863449825280