Principal SO(2n,ℂ)-Bundle Fixed Points over a Compact Riemann Surface
Let $X$ be a compact connected Riemann surface of genus $g\geq 2$ equipped with a holomorphic involution $\sigma_X,$ and let $G$ be a semisimple complex Lie group which admits an outer involution $\sigma$. A principal $(G,\sigma_X,\sigma)$-bundle over $X$ is a pair $(E,\rho),$ where $E$ is a princip...
Saved in:
| Date: | 2024 |
|---|---|
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України
2024
|
| Subjects: | |
| Online Access: | https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1063 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Journal of Mathematical Physics, Analysis, Geometry |
Institution
Journal of Mathematical Physics, Analysis, Geometry| Summary: | Let $X$ be a compact connected Riemann surface of genus $g\geq 2$ equipped with a holomorphic involution $\sigma_X,$ and let $G$ be a semisimple complex Lie group which admits an outer involution $\sigma$. A principal $(G,\sigma_X,\sigma)$-bundle over $X$ is a pair $(E,\rho),$ where $E$ is a principal $G$-bundle over $X$ and $\rho:E\rightarrow\sigma_X^*(\sigma(E))$ is an isomorphism such that $(\sigma_X^*\rho)\circ\rho:E\rightarrow E$ is an automorphism of $E$ which acts as the product by an element of the center of $G$. In this paper, principal $(G,\sigma_X,\sigma)$-bundles over $X$ are introduced and the study is particularized to the case of $G=\textrm{SO}(2n,\mathbb{C})$. It is shown that the stability and polystability conditions for a principal $(\textrm{SO}(2n,\mathbb{C}),\sigma_X,\sigma)$-bundle coincide with those of the corresponding principal $\textrm{SO}(2n,\mathbb{C})$-bundle. Finally, the explicit form that a principal $(\textrm{SO}(2n,\mathbb{C}),\sigma_X,\sigma)$-bundle takes is provided, and the stability of these principal $(\textrm{SO}(2n,\mathbb{C}),\sigma_X,\sigma)$-bundles is discussed.
Mathematical Subject Classification 2020: 14D20, 14H10, 14H60 |
|---|